
在很多的资料中都描述说SQLSERVER的存储过程较普通的SQL语句有以下优点:
存储过程只在创造时进行编译即可,以后每次执行存储过程都不需再重新编译,而我们通常使用的SQL语句每执行一次就编译一次,所以使用存储过程可提高数据库执行速度。
经常会遇到复杂的业务逻辑和对数据库的操作,这个时候就会用SP来封装数据库操作。当对数据库进行复杂操作时(如对多个表进行 Update,Insert,Query,Delete时),可将此复杂操作用存储过程封装起来与数据库提供的事务处理结合一起使用。可以极大的提高数据 库的使用效率,减少程序的执行时间,这一点在较大数据量的数据库的操作中是非常重要的。在代码上看,SQL语句和程序代码语句的分离,可以提高程序代码的 可读性。
存储过程可以设置参数,可以根据传入参数的不同重复使用同一个存储过程,从而高效的提高代码的优化率和可读性。
安全性高,可设定只有某此用户才具有对指定存储过程的使用权存储过程的种类:
系统存储过程:以sp_开头,用来进行系统的各项设定.取得信息.相关管理工作,如 sp_help就是取得指定对象的相关信息。
扩展存储过程 以XP_开头,用来调用操作系统提供的功能
exec master..xp_cmdshell ‘ping 10.8.16.1’
用户自定义的存储过程,这是我们所指的存储过程常用格式
模版:Create procedure procedue_name [@parameter data_type][output]
[with]{recompile|encryption} as sql_statement
解释:output:表示此参数是可传回的
with {recompile|encryption} recompile:表示每次执行此存储过程时都重新编译一次;encryption:所创建的存储过程的内容会被加密。
但是最近我们项目组中有人写了一个存储过程,其计算时间为1个小时47分钟,而有的时候运行时间都超过了两个小时,同事描述说如果将存储过程中的语句拿出来直接运行也就10分钟左右就运行完毕,我没当回事,但是今天我自己写的存储过程也遇到了这个问题,在查找资料后原因终于找到了原因,原来是Parameter sniffing问题。
下面看我是如何将运行一个小时以上的存储过程优化成在一分钟之内完成的:
原存储过程
CREATE PROCEDURE [dbo].[pro_ImAnalysis_daily]
@THEDATE VARCHAR(30)
AS
BEGIN
IF @THEDATE IS NULL
BEGIN
SET @THEDATE=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY (THEDATE,ALLUSER,NEWUSER)
SELECT AA.THEDATE,ALLUSER,NEWUSER
FROM
( ( SELECT THEDATE,COUNT(DISTINCT USERID) ALLUSER
FROM FACT
WHERE THEDATE=@THEDATE
GROUP BY THEDATE
) AA
LEFT JOIN
(SELECT THEDATE,COUNT(DISTINCT USERID) NEWUSER
FROM FACT T1
WHERE NOT EXISTS(
SELECT 1
FROM FACT T2
WHERE T2.THEDATE<@THEDATE
AND T1.USERID=T2.USERID)
AND T1.THEDATE=@THEDATE
GROUP BY THEDATE
) BB
ON AA.THEDATE=BB.THEDATE);
GO
每日执行:exec pro_ImAnalysis_daily @thedate=null
耗时:1小时47分~2小时13分
经过查找资料,原因如下(由于源文是一篇英文,有些地方写的我不是特别清楚,原文见http://groups.google.com/group/microsoft.public.sqlserver.server/msg/ad37d8aec76e2b8f?hl=en&lr=&ie=UTF-8&oe=UTF-8):
在SQL Server中有一个叫做 “Parameter sniffing”的特性。SQL Server在存储过程执行之前都会制定一个执行计划。在上面的例子中,SQL在编译的时候并不知道@thedate的值是多少,所以它在执行执行计划的时候就要进行大量的猜测。假设传递给@thedate的参数大部分都是非空字符串,而FACT表中有40%的thedate字段都是null,那么SQL Server就会选择全表扫描而不是索引扫描来对参数@thedate制定执行计划。全表扫描是在参数为空或为0的时候最好的执行计划。但是全表扫描严重影响了性能。
假设你第一次使用了Exec pro_ImAnalysis_daily @thedate=’20080312’那么SQL Server就会使用20080312这个值作为下次参数@thedate的执行计划的参考值,而不会进行全表扫描了,但是如果使用@thedate=null,则下次执行计划就要根据全表扫描进行了。
有两种方式能够避免出现“Parameter sniffing”问题:
(1)通过使用declare声明的变量来代替参数:使用set @variable=@thedate的方式,将出现@thedate的sql语句全部用@variable来代替。
(2) 将受影响的sql语句隐藏起来,比如:
a) 将受影响的sql语句放到某个子存储过程中,比如我们在@thedate设置成为今天后再调用一个字存储过程将@thedate作为参数传入就可以了。数据分析培训
b) 使用sp_executesql来执行受影响的sql。执行计划不会被执行,除非sp_executesql语句执行完。
c) 使用动态sql(”EXEC(@sql)”来执行受影响的sql。
采用(1)的方法改造例子中的存储过程,如下:
ALTER PROCEDURE [dbo].[pro_ImAnalysis_daily]
@var_thedate VARCHAR(30)
AS
BEGIN
declare @THEDATE VARCHAR(30)
IF @var_thedate IS NULL
BEGIN
SET @var_thedate=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
SET @THEDATE=@var_thedate;
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY (THEDATE,ALLUSER,NEWUSER)
SELECT AA.THEDATE,ALLUSER,NEWUSER
FROM
( ( SELECT THEDATE,COUNT(DISTINCT USERID) ALLUSER
FROM FACT
WHERE THEDATE=@THEDATE
GROUP BY THEDATE
) AA
LEFT JOIN
(SELECT THEDATE,COUNT(DISTINCT USERID) NEWUSER
FROM FACT T1
WHERE NOT EXISTS(
SELECT 1
FROM FACT T2
WHERE T2.THEDATE<@THEDATE
AND T1.USERID=T2.USERID)
AND T1.THEDATE=@THEDATE
GROUP BY THEDATE
) BB
ON AA.THEDATE=BB.THEDATE);
GO
测试执行速度为10分钟,我又检查了一下这个SQL,发现这个SQL有问题,这个SQL使用了not exists,在一个大表里面使用not exists是不太明智的,所以,我又对这个sql进行了改进,改成如下:
ALTER PROCEDURE [dbo].[pro_ImAnalysis_daily]
@var_thedate VARCHAR(30)
AS
BEGIN
declare @THEDATE VARCHAR(30)
IF @var_thedate IS NULL
BEGIN
SET @var_thedate=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
SET @THEDATE=@var_thedate;
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY(THEDATE,ALLUSER,NEWUSER)
select @thedate as thedate,
count(distinct case when today>0 then userid else null end) as alluser,
count(distinct case when dates=0 then userid else null end) as newuser
from
(
select userid,
count(CASE WHEN thedate>=@thedate then null else thedate end) as dates,
count(case when thedate=@thedate then thedate else null end) as today
from FACT
group by userid
)as fact
GO
测试结果为30ms以下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26