
大数据处理_大数据处理技术
每个企业或多或少每天都会需要做一个数据统计,来掌握公司的运营情况,看看自己的客户每天是否有增加等等,当客户的数据信息达到一定的程度,单独的使用一台计算机进行计算肯定不行,因此就会需要多台机器同时处理。现在有很多流行的分布式系统,架构设计的很复杂,考虑了各种容错性,协作性,任务分配性等,但是要快速的掌握和部署到实际的机器上还是很困难的。为此,提出一个简单、有效并能根据实际情况灵活开发的大数据处理的架构。
假设条件:
(1)要处理的数据分布在其他的数据记录机上,比如有w1~w12台机器,每台机器收集到数据量相差不大。
(2)现有三台机器stat1~stat3(3台机器的性能和配置相差不大)可供使用的数据统计机器,用来从w1~w12这12台机器上收集数据,并进行处理,得到用户的信息。
(3)如果要统计的数据必须要将w1~w12台机器上的数据全部取回来,并做数据消重,比如说要按照IP消重。如果不需要消重,那么就没有必要将所有的数据都合并在一起,可以分别计算后再求和。
首先: 我们查看w1~w12这12台机器上数据文件大小,并按照从大到小的顺序将数据文件排列,将最大的数据文件分给给stat1,次大的分配给stat2,第三大的分配给stat3,将第四大的分配给stat3,第五大的分配给stat2,第六大的分配给stat1,第七大的分配给stat1,第八大的分配给stat2,等等如此反复,这样stat1~stat3每台机器上对应的数据文件大小就差不多了。如果觉得w1~w12每台机器上的数据文件相差不大,那么就可以按照就近原则,将w1~w4分配给stat1,w5~w8分配给stat2,w9~w12分配给stat3进行处理。
确定每台数据统计机器要处理那些数据后,就可以在每台机器上写一个定时任务,可以同时在每日凌晨的某个时间点,每个stat机器去相应的w机器上去抓取数据,并进行分析。如果要对特定的字段比如IP需要做全局去重(w1~w12),那么我们可以采用简单的方法,将IP做个MD5转换,取MD5的第一个字母做为分割线,把IP分到16个不同的文件中,比如ip1~ip16,这样stat1~stat16每台机器上都会产生16个ip文件。每台stat机器处理完成后,生成一个done文件,表示其任务已经结束。然后处于等待阶段
从stat1~stat3这三台机器中选中一台机器作为master,当其完成抓取数据,将ip分配到16个IP文件中,并生成done文件后,去其他两台stat机器上抓取done文件,如果三台机器的done文件都存在了,那么master就将每台机器上的ip1~ip5文件都拷贝到stat1这台机器上,将ip6~ip10拷贝到stat2这台机器上,其ip11~ip16拷贝到stat3上,master拷贝任务完成后,分别在三台机器上生成一个done1文件,表示分配任务完成。
stat1~stat3的机器在等待过程中,一旦发现有done1文件存在,就分别对分配给自己的ip文件进行处理,比如stat1就会先处理分配给自己的三个ip1进行排序去重得到一个数据,然后对分配给自己的三个ip2文件进行排序去重得到一个数据,如此反复得到5个数据,stat1可以将这5个数据记录到数据库中; stat2和stat3重复stat1的过程,分别得到5和6个数据,也同时放到同一个数据库中,这样,每天就会得到16个数据,我们将这16个数据在数据库中求和,就得到了w1~w12这12台机器上总的去重后的IP数。至此整个过程完成。
在整个过程,任何一个地方都可以设置出错判断,一旦出错可以重复几次该,比如说抓取数据文件,考虑到可能会因为网络原因,导致数据文件抓取不过来,因此可以sleep 10分钟后再去抓取,如果尝试4次都失败,就可以发送报警邮件或者报警短信通知维护人员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15