
大数据发展的瓶颈多多,完美的数据你等不来
大数据的发展是个循序渐进的过程,基于已有数据做好分析也很重要。“完美的数据永远是等不来的,碎片化的数据也可以整合起来做分析,做数据分析的出发点是有多少数据可以做多少事。”鄂维南说
研究院的一个方向,就是推动科研和人才培养。鄂维南多次表示:“发展大数据的最大瓶颈是人才。”他介绍,新成立北京大数据研究院,希望能够打造世界一流的大数据教育、科研创新和成果转化的国际化平台,吸引一些最有才华,最有进取心的一流人才。
鄂维南希望,用5-10年把北京大数据研究院建成国中国乃至世界大数据产业发展的一面旗帜。不过,他也直言,研究院虽然挂牌了,但“万里长征,才走完第一步”。
挂牌是大数据研究院“长征第一步”,但鄂维南自己,却已在数据之路“行军”多年。
学术+实践的“跨界者”
先后毕业于中国科技大学数学系、中科院计算数学所的鄂维南,获得美国加州大学洛杉矶分校博士学位,还是首届美国总统青年科学家与工程师奖、国际工业与应用数学协会科拉兹奖、冯康科学计算奖得主。
他的研究领域极其广泛,分布在数学、力学和理论物理的诸多方向,并均有重要的发现和贡献。非专业人士,还真难懂鄂维南研究的深奥内容,如“研究了弹性理论的微观基础,从量子力学和分子动力学模型出发导出了宏观层面下的非线性弹性理论,得到了经典的 Cauchy-Born 准则成立的稳定性条件。”目前,鄂维南为中国科学院院士,北京大学、普林斯顿大学教授,致力于大数据技术的科学研究和产业化,主持国家973重点项目《非结构化数据分析》并任首席科学家。
事实上,作为“大牛”,鄂维南不仅是数据科学的研究者,更是大数据的实践者。
2014年,普林科技成立,鄂维南任董事长。这是一家为金融、移动运营商、交通、物流和医疗等相关领域提供大数据建模和数据分析服务行业的综合咨询服务公司。
普林科技基于大数据技术,为客户提供模型、算法和系统支持,已合作公司包括美国第一大P2P公司Lending Club、国内P2P公司人人贷、内地三大运营商、中证信用等。
如普林科技运用大数据技术,联合三大运营商打造的基于13亿人手机通讯数据和精准评分模型,推出了能够自动化输出全面标签系统和深度用户画像的产品“普林号码分”,该产品被2016大数据技术与应用推进大会评为“大数据优秀解决方案奖”。
数据隐私是个无底洞
近年,越来越多学界、业界人士推动着中国大数据的发展。鄂维南直言,中国这么大的市场,我们做大数据在国际上竞争,至少要在某些领域领先。他也提醒,中国发展大数据,存在数据开放、数据质量、数据隐私和分析技术等“瓶颈”。
他提及两个故事:一位研究地质学的院士无奈感慨“地质研究只能研究外国的,不能研究中国的”,因为地质数据都在国家部门手中,却不对外开放;一位统计学的教授去气象局寻找一些最普通的气象数据,都吃了闭门羹。
一提数据开放,必谈数据隐私。鄂维南强调:“数据脱敏远远不够,隐私问题是一个无底洞。”
他举例,有人拿到了另一个人3个月的美国信用卡数据后发现,如果知道那个人昨天在某地买了一点东西,前天在另外一个商场买了东西;找到所有消费数据,并进一步了解消费习惯,就能了解消费方面的隐私。“这是脱敏的数据,没名字、没号码,但可以通过算法找到一个人的消费习惯。想靠法律办法解决隐私问题,严格来说不可能。”鄂维南说。
大数据发展的“瓶颈”多多,开放、质量、技术等都亟待突破,在鄂维南看来,大数据的发展是个循序渐进的过程,基于已有数据做好分析也很重要。“完美的数据永远是等不来的,碎片化的数据也可以整合起来做分析,做数据分析的出发点是有多少数据可以做多少事。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15