京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据处理的关键技术
大数据处理的关键技术主要包括:数据采集、数据预处理(数据清理、数据集成、数据变换等)、大数据存储、数据分析和挖掘、数据的呈现与应用(数据可视化、数据安全与隐私等)。
该图展示了如何将大量的数据经过一系列的加工和处理,最终以有价值的信息形式到达用户的手中。在数据分析中,云技术与传统方法之间进行联合,使得一些传统的数据分析方法能够成功地运用到大数据的范畴中来。
一、数据的采集技术
数据的采集是指利用多个数据库来接收发自客户端(Web、App或传感器形式等)的各种类型的结构化、半结构化的数据,并允许用户通过这些数据来进行简单的查询和处理工作。
二、数据集成与处理技术
数据的集成就是将各个分散的数据库采集来的数据集成到一个集中的大型分布式数据库,或者分布式存储集群中,以便对数据进行集中的处理。
该阶段的挑战主要是集成的数据量大,每秒的集成数据量一般会达到百兆,甚至千兆。
三、大数据存储及管理技术
数据的海量化和快增长特征是大数据对存储技术提出的首要挑战。为适应大数据环境下爆发式增长的数据量,大数据采用由成千上万台廉价PC来存储数据方案,以降低成本,同时提供高扩展性。
考虑到系统由大量廉价易损的硬件组成,为了保证文件整体可靠性,大数据通常对同一份数据在不同节点上存储多份副本,同时,为了保障海量数据的读写能力,大数据借助分布式存储架构提供高吐量的数据访问。
目前,Google的GFS(Google File System)和Hadoop HDFS(Hadoop Distributed File System是较为有名的大数据文件存储技术。HDFS是GFS的开源实现,它们均采用分布式存储的方式存储数据(将文件块复制在几个不同的节储节点上)。在实现原理上,它们均采用主从控制模式(主节点存储元数据、接收应用请求并且根据请求类型进行应答,从节点则负责存储数据)。
大数据的数据管理技术的典型代表是Google 的 Big Table 和Hadoop的HBase。Big Table 基于GFS,HBase基于HDFS。作为NoSQL(Not only SQL)数据库,它们为应用提供数据结构化存储功能和类似数据库的简单数据查询功能,并为MapReduce 等并行处理方式提供数据源或数据结果的存储。
四、大数据的分析与挖掘
数据分析与挖掘是大数据处理流程中最为关键的步骤。
在人类全部数字化数据中,仅有非常小的一部分(约占数据量的1%)数值型数据得到了深入分析和挖掘(如:回归、分类、聚类),大型互联网企业对网页索引、社交数据等半结构化数据进行了浅层分析(如:排序)。占总量近60%的语音、图片、视频等非结构化数据还难以进行有效的分析。
大数据分析技术的发展需要取得两个方面的突破:
一是对体量庞大的结构化和半结构化数据进行高效率的深度分析,挖掘隐性知识(如:从自然语言构成的文本网页中理解和识别语义、情感、意图等);
二是对非结构化数据进行分析,将海量数据复杂多源的语音、图像和视频数据转化为机器可识别的,具有明确语义的信息,进而从中提取有用的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10