
为什么说你的数据不是大数据
现如今,我们已经能够保存下每个业务流程当中的数据,甚至已经可以保存下用户访问页面的数据或者观众观看哪些节目的数据。物联网的出现改变了游戏规则,为我们开启了一扇门。然而每一条数据、每一条记录的价值却在下降。
可以这样说,一条信用卡的交易记录是相对丰富的数据,它包含了人、地点、时间以及更多附加在数据上的价值,因此很自然我们想要收集这些数据,用来促进销售的循环。然而相比而言,一条用户在网上的浏览点击行为数据就没有那么“值钱”了。这些数据也许包含了用户的行为习惯信息,但单独拿出一条记录也许是没有任何价值的。你只有在想要分析用户的行为时,才会大量收集这样的数据。
而现在的情况是,存储这些数据的成本是比较低的,而且你收集越多的数据,通过比对不同的趋势,你就可能获得更多的价值。拿观众观看电视的数据来说,大量收集这些记录,然后与节目表和广告数据整合在一起进行分析,就能更好地理解观众喜欢什么样的节目,爱看什么样的电视剧,客户也可以更精准地投放广告。这时候大数据的价值就会凸显出来,就像最近火的一塌糊涂的《纸牌屋》。
因此我们可以判断,当应对大量的记录时,如果每一条单独记录越小(数据量,关联性),那么它是大数据的可能性就越大。而“大数据分析”所面临的挑战是,从这些信息的小小元素中提炼出意义,我们可能要把它们与上述的丰富的数据放到一起来提供上下文,识别其中隐藏着的模式。这算不上是大海捞针,更准确的说法应该是从一堆针头中找到你所需要的那一个。
大数据与“热”数据
还有一种常见的错误观点,即你不仅拥有很多数据,而且用户访问这些数据的频率很高,因此就需要我们用“大数据思维”来处理这些数据。
这些数据其实不一定是大数据,而是所谓的“热数据”,它们并不适用于处理大数据的方式。热数据是纯粹的扩展性问题,你需要把系统的性能调整到最佳,降低系统的延迟同时确保它能够被所有提出访问需求的用户访问到。
大数据与它正相反,我们可以说它是“冷数据”。也就是说,大数据并不是你频繁访问的数据,除了作为分析之用,甚至你从来不会去用到它。事实上,除了分析之外,我们可以把大数据“冷冻”起来。尽管有时候我们会把大数据与新鲜快速的记录一起进行分析,但大数据池至少需要从概念上与活动的热数据隔离开来。否则二者会互相造成不良的影响。将冷热数据分开存储是公认的最佳实践,无论是存储还是应用,它们都是完全不同的数据。
很不幸的是,有很多人并没有认清这一点,他们还在将大数据处理方式应用到各种各样的数据类型当中。最终的结果也就可想而知。
不要轻视其他数据的价值
现在,你需要从大数据的狂热中退一步思考,你现在最重要的数据也许并不是那些大数据,而是我们所说的热数据。你也许已经建立了大数据系统,时刻准备从大数据金矿上挖掘潜在的价值,但一定不要忽视其他数据的价值。你还有业务数据,它需要你快速、高效、一致地交付这些数据,同时要解决扩展性的问题。记住,大数据的最佳实践并不适合这些数据。你的数据也许这是一些重要的有价值的数据,它们并不是大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26