
用R语言求概率分布_r语言 概率分布图
R语言一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) > q的最小x)求值,并根据分布进行模拟。
在R中,根据某种分布生成随机序列的函数如下:
在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,…),其中func指概率分布函数,n为生成数据的个数,p1, p2, . . .是分布的参数数值。上面的表给出了每个分布的详情和可能的缺省值(如果没有给出缺省值,则意味着用户必须指定参数)。数据分析培训
例:用0~1之间的均匀分布产生10个随机点
> runif(10)
[1] 0.961465376 0.007521925 0.193619234 0.137027246 0.739370654 0.072907082
[7] 0.674551635 0.650777811 0.984664183 0.796723066
大多数这种统计函数都有相似的形式,只需用d、p或者q去替代r,比如密度函数(dfunc(x, …)),累计概率密度函数(也即分布函数)(pfunc(x,…))和分位数函数(qfunc(p, …),0<p<1)。最后两个函数序列可以用来求统计假设检验中P值或临界值。例如,显著性水平为5%的正态分布的双侧临界值是:
> qnorm(0.025)
[1] -1.959964
> qnorm(0.975)
[1] 1.959964
对于同一个检验的单侧临界值,根据备择假设的形式使用qnorm(0.05)或1 – qnorm(0.95)。
下面是一些用R语言求解概率问题的例子:
1. 某人进行射击,每次击中目标的命中率为0.02,独立射击400次,求至少击中两次的概率。
解:400重伯努利试验,用二项分布求解。
P{X = k} = C400k * (0.02)^k * (0.0=98)^(400-k)
P{X≥2} = 1 – P{X = 0} – P{X = 1}
> 1 – sum(pbinom(0:1, 400, 0.02))
[1] 0.9968561
结论:决不能轻视小概率事情,在多次重复试验的情况下,这一事件的发生几乎是肯定的。
2. 设X服从平均值为1,标准差为2的正态分布(高斯分布),即X ~ N(1, 4),求P{0<X≤1.6}
解:这里X是一个连续型随机变量。求X在某段区间上的概率,用X的分布函数在区间两端的值的差。
方法一:P{0<X≤1.6} = P{X≤1.6} – P{X≤0} = F(1.6) – F(0)
> pnorm(1.6, 1, 2) – pnorm(0, 1, 2)
[1] 0.3093739
方法二:转化为标准正态分布。P{x1 < X ≤x2}=P{(x1-μ)/σ < (X-μ)/σ≤(x1-μ)/σ}=φ((x2-μ)/σ) –φ((x1-μ)/σ)
即P{0<X≤1.6}=φ((1.6-1)/2) –φ((0-1)/2)
> pnorm((1.6-1)/2) – pnorm((0-1)/2) #pnorm函数的缺省参数mean=0,sd=1,即默认标准正态分布
[1] 0.3093739
知识点:设X是一个随机变量,x是任意实数,函数F(x)=P{X≤x}称为X的分布函数。
对于任意实数x1,x2(x1<x2),有P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
3. 求标准正态分布的上α分位点。
知识点:设X~N(0,1),若Zα满足条件 P(X>Zα)=α,0<α<1,则称Zα为标准正态分布的上α分位点.
注意上α分位点和R语言中分位函数(对给定的q,求满足P(X≤x) > q的最小x)之间的关系。
解:下面给出α=0.001、α=0.005、α=0.01、α=0.025时的上α分位点Zα的值。
> exp <- expression_r(qnorm(1 – alpha))
> alpha = 0.001
> eval_r(exp)
[1] 3.090232
> alpha = 0.005
> eval_r(exp)
[1] 2.575829
> alpha = 0.01
> eval_r(exp)
[1] 2.326348
> alpha = 0.025
> eval_r(exp)
[1] 1.959964
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27