
用R语言求概率分布_r语言 概率分布图
R语言一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) > q的最小x)求值,并根据分布进行模拟。
在R中,根据某种分布生成随机序列的函数如下:
在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,…),其中func指概率分布函数,n为生成数据的个数,p1, p2, . . .是分布的参数数值。上面的表给出了每个分布的详情和可能的缺省值(如果没有给出缺省值,则意味着用户必须指定参数)。数据分析培训
例:用0~1之间的均匀分布产生10个随机点
> runif(10)
[1] 0.961465376 0.007521925 0.193619234 0.137027246 0.739370654 0.072907082
[7] 0.674551635 0.650777811 0.984664183 0.796723066
大多数这种统计函数都有相似的形式,只需用d、p或者q去替代r,比如密度函数(dfunc(x, …)),累计概率密度函数(也即分布函数)(pfunc(x,…))和分位数函数(qfunc(p, …),0<p<1)。最后两个函数序列可以用来求统计假设检验中P值或临界值。例如,显著性水平为5%的正态分布的双侧临界值是:
> qnorm(0.025)
[1] -1.959964
> qnorm(0.975)
[1] 1.959964
对于同一个检验的单侧临界值,根据备择假设的形式使用qnorm(0.05)或1 – qnorm(0.95)。
下面是一些用R语言求解概率问题的例子:
1. 某人进行射击,每次击中目标的命中率为0.02,独立射击400次,求至少击中两次的概率。
解:400重伯努利试验,用二项分布求解。
P{X = k} = C400k * (0.02)^k * (0.0=98)^(400-k)
P{X≥2} = 1 – P{X = 0} – P{X = 1}
> 1 – sum(pbinom(0:1, 400, 0.02))
[1] 0.9968561
结论:决不能轻视小概率事情,在多次重复试验的情况下,这一事件的发生几乎是肯定的。
2. 设X服从平均值为1,标准差为2的正态分布(高斯分布),即X ~ N(1, 4),求P{0<X≤1.6}
解:这里X是一个连续型随机变量。求X在某段区间上的概率,用X的分布函数在区间两端的值的差。
方法一:P{0<X≤1.6} = P{X≤1.6} – P{X≤0} = F(1.6) – F(0)
> pnorm(1.6, 1, 2) – pnorm(0, 1, 2)
[1] 0.3093739
方法二:转化为标准正态分布。P{x1 < X ≤x2}=P{(x1-μ)/σ < (X-μ)/σ≤(x1-μ)/σ}=φ((x2-μ)/σ) –φ((x1-μ)/σ)
即P{0<X≤1.6}=φ((1.6-1)/2) –φ((0-1)/2)
> pnorm((1.6-1)/2) – pnorm((0-1)/2) #pnorm函数的缺省参数mean=0,sd=1,即默认标准正态分布
[1] 0.3093739
知识点:设X是一个随机变量,x是任意实数,函数F(x)=P{X≤x}称为X的分布函数。
对于任意实数x1,x2(x1<x2),有P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
3. 求标准正态分布的上α分位点。
知识点:设X~N(0,1),若Zα满足条件 P(X>Zα)=α,0<α<1,则称Zα为标准正态分布的上α分位点.
注意上α分位点和R语言中分位函数(对给定的q,求满足P(X≤x) > q的最小x)之间的关系。
解:下面给出α=0.001、α=0.005、α=0.01、α=0.025时的上α分位点Zα的值。
> exp <- expression_r(qnorm(1 – alpha))
> alpha = 0.001
> eval_r(exp)
[1] 3.090232
> alpha = 0.005
> eval_r(exp)
[1] 2.575829
> alpha = 0.01
> eval_r(exp)
[1] 2.326348
> alpha = 0.025
> eval_r(exp)
[1] 1.959964
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14