
大数据!然后呢?厚数据时代的来临
大数据(Big Data)热潮是这几年产业界最夯的趋势话题,网路社群媒体的兴起,更推波助澜这股热潮,以为买了网路社群的大数据资料,就可以掌握消费者行为脉动,让行销活动无往不利,仿佛市场立即化作可取予求的宝山,这股数据掏金热让政府及许多企业趋之若鹜,纷纷投注资源于社群媒体的搜集与购买,幻想着抢先一步从中淘筛出最大的黄金。
但,大数据真的是这样吗?
将排山倒海的社群媒体资讯导入企业决策者们的电脑中,希望从琳琅满目真假难分的数据中,找出一条能带领企业脱离困境轻松获利的康庄大道;却发现原本想用来解决问题的大数据,创造了一个满是数字迷魂阵,一头栽进去很能找得到出口。
其实大数据的应用,着眼点并不在「大」量的数据,而是在「人」如何看待数据和让数据说话。
真正有用的数据不一定要花大钱从外部购买,毕竟买回来还要花大量的力气去阅读消化,还不如先从公司内部累积的精准数据和经验着手,看能不能重新找出正确的分析观点来解决问题。
先从小而准的数据开始
在进行数据分析时,数据准确度的重要性比数据量的大小重要,我们可以依数据性质分为三类:小而准(Small and accurate data)、大而乱(big and messy data)、开放数据(opendata)。
其中,小而准的数据如公司内部POS 交易数据,准确而清楚;大而乱的数据则像是从网路社群媒体抓下来的数据,还需要结构化统计整理出意义;开放数据像是天气、人口普查之类,则可以从政府机关的资料库提取。
在资料进行分析之前,我们都必须先思考我们面临的问题是什么?从问题中思考解决的方案,提出观点,再从资料分析中佐证。数据量越大,不确定性越高,所需要进行分析或排除的手续也相对较多,若我们能用小而准的数据进行分析比对,发现问题想出解决方法,一定会比从大而乱的资讯中找答案来得省时省力。
大数据时代,竞争的是解决问题与决策反应效率
一般大数据的特性, 大家耳熟能详的多半是四个V: 数量大(Volume)、速度快(Velocity)、多样性(Variety)、和不确定性(Veracity),但大数据存在的重要意义,也就是第五个V—价值(Value)却常常被人遗忘。
行销专家指出,前面四个V 都是在描绘大数据的样貌轮廓,第五个V 则是提醒,大数据需经过清算整理后,才能够为行销人或决策者带来贡献。所以大数据的使用重点,绝非资料量多大或资料取得管道多么特殊,而是资料创造多少价值。
用一般精准的小数据就能解决的问题,何须大费周章投入大量资源和成本相对较高的大数据?人们往往被大数据字面上的「大」所误导,以为数据量就是要大才会有效,殊不知关键是数据必须能够被衡量掌控,以小而准的数据为基础,视情况进行不同类型的数据之间相乘与重组,才是明智的大数据抉择。
能否用大数据的观念,将手边的数据迅速的转化成正确决策与行,比「快」还要比「准」,将是大数据时代接下来的重要课题。
大数据之后,厚数据(Thick Data)时代的来临…
「数字会说话」或许是大数据时代最常听到的口号,但美国当代统计预测鬼才奈特席佛(Nate Sliver)提醒我们:「数字没办法为自己说话,是我们在为它们说话,我们赋予它们意义。我们可能会用对自己有利的方式来解释资料,让资料脱离客观的现实。 」
大数据,不是单纯以数据多寡或来源来决胜负,而是要依靠「人」根据数据的结合与交叉比对形成的「判断」或「预测」准确与否来决胜。尤其在行销领域中,大数据大部分都是在处理与人有关的数据,而不是没有生命的物质。大数据行销背后代表的,是人的行为模式与需求,因此不能单纯只靠数字或统计来做判断的依据,必须更深入地思考品牌、商品和人之间的关系,而这样的思维将会是下一个厚数据(Thick Data)时代的开端。
所谓的厚数据与强调数据规模的大数据不同,厚数据更重视人和产品或产业数据间的深度与情境,好的数据观点,也往往是从厚数据产生,而非大数据。厚数据强调深入使用者情境,需要厚实的产业知识或经验为底,透过厚数据,将产业产品与消费者做更紧密的连结。
未来的大趋势,若只单纯从现有的大数据发现和判断,过度信任数字呈现结果,将很有可能造成误判。若能透过深入使用情境,探知自消费者需求影响而成的未来产业发展趋势,方能展现厚数据的重要价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26