京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的教育新使命
欧美发达国家和研究机构均非常重视大数据,在国家层面建立了教育大数据中心。譬如,美国建有国家教育大数据中心,其中涵盖近些年来不同类型的大学与中小学在数量、经费、教师人数等诸多方面的数据以及统计结果,经合组织(OECD)和英国也都各自建有教育数据中心。
近期,我们到美国密西根大学进行访问,深深感受到该校作为世界一流大学,大数据意识非常浓厚。该校建立的密西根大数据研究所(MIDAS),与图书馆以及多媒体服务中心等密切联系,为密西根大学乃至密西根州和全美的教学以及科研服务。密西根大数据研究所依托密西根大学而建,旨在利用大数据,服务科学研究、教学、培养人才以及做出各种决策。该研究所由跨学院、多学科的40多位密西根大学的科研人员组成,包括统计、生物统计学、数学、计算机科学、工程、信息科学等专家。研究范围不仅涵盖数据管理、数据共享、统计、机器学习、信息技术等领域,还包括天文学、进化生物学、疾病模型发现、卫生政策、材料合成、个性化医学、社会科学等领域。
据了解,密西根大数据研究所包括数据科学的挑战行动计划(涵盖学习分析、交通、社会科学、个性化医疗和健康领域)、数据科学教育和培训计划,以及一个工业参与项目。密西根大学的同仁们已经认识到:数据科学现已成为继理论、物理实验和计算分析之后的科学发现的第四模式。基于大数据的技术不仅能够应用于科学研究,也在教育、健康、政策分析和商业决策中产生重大影响。
无论是欧美国家层面的大数据中心,还是作为综合性大学的密西根大学的大数据研究所,都具有如下特点:首先是多样性,要从多个维度赋予某个事物的数据内涵;其次是动态性,数据要不断更新,政府组织、研究机构和各级学术组织,乃至每个科研工作者都是数据的提供者;再次是直观性,大数据不仅仅是数据的提供,更是数据统计的直观图像的研究、建构和分享;最后是共享性,每个人都是大数据的分享者。
就我们团队所见而言,无论是美国小学教室的墙报,还是中学课堂的教室文化,包括密西根大学数据研究所以及曼哈顿街区的广告,大数据以及数据文化无处不见。数据意识正在成为美国高等教育和中小学教育的隐性或显性课程,数据科学的文化正悄然兴起。在我国基础教育领域,数据意识重视程度远不如高校。例如,2015年8月27日,在北京市委市政府的支持与指导下,由中关村管委会、海淀区政府、北京大学、北京工业大学四方共同筹建了北京大数据研究院。清华大学、电子科技大学、中国人民大学等高校都成立了数据研究院、大数据研究中心或统计与大数据研究院等。尽管我国高等院校在数据研究院(中心)人员构成的跨学科性、与图书馆的协作性、为国家和地方做出决策的服务性等方面还达不到理想的程度,但我国部分高校对数据的愈发重视,将倒逼基础教育阶段的校长和教师们更加重视数据意识的培养。
在大数据时代,作为基础教育的主阵地,要培养的数据意识包括:
首先,重视理解数据类型的多维度性。从来源形式分为数字、文本数据、音频、视频数据等;从能否有序分类,可分为从结构性、半结构性和非结构性数据;从数据的存在形式又可分为时间数据、空间数据和生态系统的时空数据等。数据类型的多样性,是大数据时代建立全局观数据意识的前提。
其次,注重从多种途径采集数据。包括官方发布的数据、公共资源数据、研究机构和非政府组织发布的数据、各种研究的数据等。大数据不仅注重数量,更要注重同一事物的数据表征形式的多样性,后者是数据客观表征事物的根本保证。
再次是统计意识。包括利用数据进行统计决断,获得统计规律的意识,认识到统计的结论不是绝对,更不是唯一。
最后则是运用软件进行数据处理。包括运用图形计算器处理数据,在校本课程开发中,可以开发出各种可视化分析软件课程,供学生选用等。
作为基础教育工作母机的师范大学,不仅要培养具有数据意识与能力的师资,还要建构区域基础教育大数据研究中心,收集、建构、统计某个区域基础教育的方方面面大数据,着眼于服务于区域、学校的基础教育科研,服务于国家基础教育决策,进而建构区域基础教育生态系统指标,推动我国基础教育的健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28