
大数据时代,你的数据中心如何迎战
信息时代,数据已经融入到了每一个行业,每一个业务领域。继“物联网”、云计算”之后,“大数据”一词被越来越多地提及。“大数据”在政府,金融,公安,通讯,交通,医疗,媒资等行业已存在多时,却因为近年来信息行业的发展而再度引起人们的关注。
你的云数据中心,拿什么来迎战“大数据时代”?
“大数据”作为云计算,物联网之后IT行业又一大颠覆性的技术革命,将对企业的数据中心带来颠覆性的影响。传统数据中心已无法满足海量复杂数据的处理和分析要求,企业内部的经营交易信息,互联网世界中的产品信息,物流信息等等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何能满足企业业务快速发展的需要,为业务部门提供最佳的IT服务和体验,是企业信息化建设中目前面临的难题,企业需要积极思考传统数据中心如何应对大数据的挑战。
你的云数据中心,可以正面迎接“大数据时代”的冲击吗?
现阶段,大部分企业已有独立的数据中心,能够满足日常业务的需求。但是大数据时代对于数据中心的信息处理能力,数据融合分析能力,存储,计算能力以及数据挖掘都提出了更高的要求。
我们理解,一般数据中心的数据都来源于电脑,移动终端等等,而大数据时代的数据类型更加多样化,数据来源包括视频、音频、检测仪传感器等不同的渠道,各个行业的业务部门开始使用这些数据提高生产效率,分析热点事件,改进生产质量,寻找新型商业模式。因此,不同于传统应用环境对数据简单的进行存储和归档,在新的应用环境下更加强调数据的实时可用性。另一方面,大数据时代,对于数据的实时处理和高效运维也有较高的要求,企业都希望自己的数据中心有能力通过实时分析报表和数据来随时掌握企业运营状况,需要快速做出决策判断。如果相关数据获取不及时有可能会很大程度影响部门对于业务的分析和决策。所以企业需要思考应该如何提升数据中心的基础架构可以更高效的支撑数据的处理能力,分析能力,提高整体运营运维效率。
未来的云数据中心,发展方向在哪里?
如何让数据驱动业务发展,这是大数据时代下数据中心必须面对的问题。传统数据中心集中应对业务部门的需求,基础能力已经入不敷出;大数据时代下,数据的复杂性决定了数据中心需要更快速滴应对业务需求的变化和不确定性。如何保证数据中心可以为业务部门提供敏捷高效,安全可靠的服务?华为认为,未来的数据中心应该是以业务驱动为导向,提出了数据融合的云数据中心的理念。
数据融合的云数据中心不再限于单个物理数据中心的能力和用户体验,而是将所有数据中心物理资源(不论是多个还是单个物理数据中心)看成一个资源整体,围绕跨数据中心管理,资源调度和灾备设计,实现多个物理数据中心的逻辑统一,其关键技术包括实现统一资源池系统的云操作系统FusionSphere, 全数据中心统一资源管理与调度的运营运维管理系统ManageOne,基于大二层SDN超宽带网络和软件定义数据中心VDC(虚拟数据中心)。
1、业务敏捷:统一的数据融合资源池,统一建设,不同的业务系统按需申请数据资源,数据平台基于不同的业务诉求, 自动部署数据的节点、实现业务快速发放。
2、数据全生命周期处理能力:统一的数据融合平台提供数据采集、存储、计算、应用全生命周期的能力, 不同的业务系统可以基于对数据的需求,可以自定义所需的hadoop大数据组件,关系型数据库Oracle/SQL Server/MySQL,数据采集ETL等能力。
3、数据融合与智能分析:多系统、多格式、多地域、多类型的数据源,通过数据融合将会被统一存储、统一计算、统一分析,数据之间也因业务需求自由流动;数据大规模融合,进一步提升业务上线率,提升人员办公效能,并从海量的数据中,及时找到企业所需的热点信息流,通过智能分析,挖掘数据更多的价值。
4、现网应用:新的数据平台适应原有系统对数据库的需求,统一的SQL 、统一的搜索,分布式大数据网关,将会保证原有系统少改动,数据处理分析能力大规模提升、业务系统将可以处理更多的数据。
未来,数据的核心应用将是帮助企业如何发现更大的商业价值。如何使用大数据,如何在海量数据中挖掘有价值的信息是重中之重,因此企业更应专注于数据中心隐藏的价值,通过融合的数据平台,充分挖掘数据的核心价值,不断优化数据中心业务流程,降低管理成本,协助企业做出数据支撑的准确的科学决策,为企业的持续创新与发展贡献力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14