
大数据时代要突破的难点
大数据已经成为行业不能不提的话题,它涵盖了4V面向,分别是处理时效(Velocity)、数据格式(Variety)、数据量(Volume)与真实性(Veracity),通过快速的采集、发现和分析,从大量化、多类别的数据中提取价值。
扩展到一个城市来讲,那么多的摄像头每天工作着,每个街道的人流数据、车流数据都在其中,即便不用来刑侦,但作为数据的二次开发却又不可忽略的意义,庞大数据整体汇集起来,就是一个城市的人车分布图,静态的如不同区域人的特征、车的特征,动态的如人车的路径、停留模式,这对城市的规划和管理都有重大的参考价值。但是安防大数据采集、存储、发现和分析依然有不少问题亟待解决。
数据大联网缺乏统一标准
在中国,平安城市发展迅速,越来越多的城市及用户正感受到这一工程带来的安全感。从2005年平安城市建设作为概念走进中国,8年建设中,平安城市建设不仅在技术上实现了突破,在建设理念上也实现了新飞跃。今后几年中,平安城市将不断向智慧城市靠拢。那么建设到何种程度才能算得上智慧呢?离真正智慧城市的路有多遥远呢?
智慧城市中必须实现的是数据的共享,跨区域视频监控联网、监控资源整合与共享,政府各部门之间的视频监控资源的共享等等。但是不同的地方城市,不同的行业类别,不同的管理方式都会有不同的监控系统方案,一直都存在行业标准的缺乏问题,数据的融合或者共享中会有兼容性难题,有些甚至是不可实现的。
大规模视频监控联网的技术难度是比较大的,以实现异构平台互联互通为主要目的的联网接口协议在传统的安防技术规范较少涉及,如果联网接口协议未经验证测试,往往难以实现异构平台的互联互通,就算能够实现互通,在系统功能、稳定性等方面也会存在很多问题。从浙江省发布DB33/T629-2007以来,国内外也陆续发布了可以支持视频监控联网的技术协议,但从成熟度上看都存在一定的问题。
大数据存储容易出现问题
在大数据时代来临之际,我们面临的挑战还有存储问题。大数据中的大容量通常可达到PB级的数据规模,那么对于海量数据存储系统扩展能力的要求也会很高。以国内某省为例,公共视频监控已经超过100多万个摄像头,总保有量近400万,以此估计,全国摄像头数量不少于4000万,某投行的报告称行业每年还在以20%加速增长,行业龙头海康威视(002415,股吧)12年的年报披露的销售量就达570万套(含前后端),增长37%.而另一个数据也很惊人,英国的摄像头数量与人口数量之比已经达到1:15.粗略计世界至少有1亿个摄像头在角落静静的看着,这样的视频监控将是数据的大生成器。从摄像前端的海量数据和到有效数据之间的也存在矛盾,摄像头不停歇的工作,如实记录镜头覆盖范围发生的一切,但对于客户来讲大部分信息是无效,有效信息可能只分布在一个较短的时间段内,大量的数据存储给数据库带来不小的压力,而无效的数据更是对于资源的浪费。
与此同时,存储系统的扩展一定要简便,尽量能通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。
大数据时代数据的行为分析
数据共享就意味着无可限量的机会。市场调研机构IDC指出,大数据已经走出了“科学研究”阶段,逐渐进入了商业主流。大数据时代,最重要的一点就是数据共享和数据分析处理,从庞大的数据库中,找寻到相对应的线索,贯穿起来创出意想不到的效果。除此之外,还可以通过大数据分析营销习性,海康威视一款智能监控摄像机的应用证实了这一点,它通过对视频信号进行分析理解,透析卖场商铺人流量和产品关注度等。大数据将带来一波生产率增长和消费者盈余浪潮。
电子科技大学互联网科学中心主任周涛教授介绍了今年公开的一项最新研究成果:某个手机用户只要曾出现在4个基站的服务区,利用大数据模型,研究者就能把他从百万用户中区分出来,识别他的身份,准确率为95%.同样的案例在安防领域也时有发生,监控视频数据,透过智能分析发现某人、车在银行外无故多次徘徊,就可以从实施重点监控,以防不测。常见的应用包括入侵检测、周界告警、车辆识别、交通违法监控等。
全国性的大数据时代在安防行业还有一段路要走,亟待解决的问题还很多。但是从局部的的数据共享,数据联网来看,已经表现出了不俗的前景,可以预见未来市场更为广阔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14