
SPSS中介效应分析
社会心理学研究中经常遇到分析待研究的自变量与因变量之外的第三者变量在其中所扮演的角色和意义。如果第三者变量是协变量,我们可以通过协变量的方差分析或回归分析加以控制;如果第三者经过排查不是协变量,可能是因果之间的间接变量和(或)调节变量,对这类的问题的研究,中介效应与调节效应分析时可行的解决之道。
一、中介效应的概述
中介效应是指变量间的影响关系(X-Y)不是直接的因果链关系,而是通过一个或一个以上的变量(M)的间接影响产生的,因此我们称M为中介变量,而X通过M对Y产生的间接影响称为中介效应。中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应不等于简介效应,此时间接效应可能是部分中介效应和所有中介效应的总和。在社会心理学研究当中,变量间的关系很少是直接的,更常见的是间接关系。
自变量X对因变量Y的影响,如果X变量通过影响M变量来影响Y变量,则M为中介变量。通常将变量经过中心化转化后,得方程1:Y=cX+e1;方程2:M=aX+e2;方程3:Y=c’X+b M +e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c'是直接效应。当只有一个中介变量时,效应之间有c=c'+ab,中介效应的大小用c-c'=ab来衡量。
二、中介效应检验过程
中介效应是简介效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。步骤为:第一步检验c,如果c不显著,Y与X相关不显著,停止中介效应分析,如果显著进行第二步;第二步依次检验a、b,如果都显著,那么检验c',c'显著,为部分中介效应模型,c'不显著,则为完全中介效应模型;如果a、b至少有一个不显著,则做sobel检验,检验的统计量是Z=^a^b/Sab,显著则中介效应显著,不显著则中介效应不显著。Sobel检验免费的在线计算器网址为http://www.danielsoper.com/statcalc/calc31.aspx,只要把这a、b、SEa、SEb四个数输入,就可以直接得到Z值及其单侧与双侧概率。
三、实例详解
研究工作认同感与工作绩效之间心理因素(焦虑)的意义。原始数据包括:领导不认同、同事不认同、客户不认同、心跳、紧张、坐立不安、效率低和效率下降8个变量,如图3-1所示。
图30-1 中间效应分析例题数据库
操作步骤:
(1)根据分析目的,合并原始变量产生3个新变量“工作不被认同”、“焦虑”和“工作绩效”,如图30-2所示,各个新变量值等于原始变量的均值。
图3-2 产生3个新变量
自变量(X)为“工作不被认同”包含3个观测指标:领导不认同、同事不认可、客户不认可;中介变量(M)“焦虑”包含3个指标:心跳、紧张、坐立不安;因变量(Y)“工作绩效”包含两个观测指标:效率低和效率下降。
新变量的均值如图3-3所示。
描述统计量
图30-3 新变量的均值
(2)将新变量X、M、Y中心化,即个体值与其均数之差处理,得到中心化后的新变量:X“不被认同(中心化)”、M“焦虑(中心化)”、Y“工作绩效(中心化)”,如图3-4所示。
图3-4 中心化后的新变量
(3)中介效应分析第一步检验,即检验方程Y=cX+e1中的c是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出图3-5所示的“线性回归”对话框。
2)将变量“工作绩效(中性化)”放入“因变量”框,将变量“不被认同(中性化)”放入“自变量”框。方法选择“进入”。
图3-5 “线性回归”对话框
3)单击“统计量”按钮,弹出3-6所示的“线性回归:统计量”对话框,选择左侧的“估计(E)”复选框,选择右侧“模型拟合度(M)”和“R方变化(S)”复选框。其他采用系统默认,单击“继续”按钮返回主对话框。
图3-6 “线性回归:统计量”分析对话框
4)单击“确定”按钮,输出结果。
图3-7 回归分析检验方差中c的显著性结果1
检验结果如图3-7和图3-8所示。可知,方程Y=cX+e1的回归效应显著,c值等于0.678,P=0.000,可以进行方程M=aX+e2和Y=c'X+bM+e3的显著性检验。
图3-8 回归分析检验方差中c的显著性结果2
(4)中介效应分析第二步检验,即检验方程M=aX+e2中的a是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出图3-5所示的“线性回归”对话框。
2)将变量“焦虑(中性化)”放入“因变量”框,将变量“不被认同'(中性化)”放入“自变量”框。方法选择“进入”。
图3-9 回归分析检验方差中a的显著性结果1
3)其他选择不变,单击“确定”按钮,输出结果,如图3-9、3-10所示。
图3-10 回归分析检验方差中a的显著性结果2
由图3-9、图3-10所示结果分析可知,方程M=aX+e2中,a值等于0.533,显著性P=0.000,继续进行方程Y=c'X+bM+e3的显著性检验。
(5)中介效应分析第三步检验,即检验方程Y=c'X+bM+e3中的b是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出3-5所示的“线性回归”对话框。
2)将变量“工作绩效(中性化)”放入“因变量”框,将变量“不被认同(中性化)”和“焦虑(中性化)”同时放入“自变量”框。方法选择“进入”。
3)其他选项不变,单击“确定”按钮,输出结果,如图3-11、3-12所示。
图3-12 回归分析检测方差中b的显著性结果2
如图3-11、图3-12所示的结果分析可知,方程Y=c'X+bM+e3中,b值为0.213.显著性为p=0.000,因此a和b都是有显著性的,接下来检验中介效应到底是部分中介效应还是完全中介效应。
(6)判断完全中介效应还是部分中介效应,即c'的显著性。
由图30-7所示的结果可知c'等于0.574,显著性为P=0.000,因此是部分中介效应。自变量“工作不被认同”对因变量“工作绩效”的中介效应不完全通过中介变量“焦虑”的中介来达到其影响,“工作不被认同”对“工作绩效”有部分直接效应,中介效应对总效应的频率为:Effect M=ab/c=0.533x0.213/0.678(16.7%),中介效应解释了因变量的方差变异为sqrt(0.490-0.459)=0.176(17.6%)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14