京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据发展困难重重 未来之路何去何从
短短几年之内,大数据已经彻底改变了企业运营业务的方式——但截至目前,我们才刚刚初窥其门径。随着企业开始有意识到收集各类数据信息,其亦开始发现对这部分数据加以正确利用所能够带来的巨大潜力。
一些积极迎接变革的企业发现,他们的数据实际上可能正是其掌握的最大资产。除了数据本身之外,精明的企业还能够通过分析数据内容以了解并更好地服务于自身客户,甚至能够将其中一些关键性数据出售给合作伙伴及下游厂商以赚取额外利润。举例来说,优步与Lyft等服务就能够非常准确地把握与客户出行习惯相关的数据,并将其交付至Airbnb、VRBO等其它网站。与此同时,Fitbit及其它厂商提供的健身追踪器亦能够利用用户的健康活动数据实现巨大价值。即使是与医疗卫生业务毫不沾边的苹果公司,也能够以前所未有的洞察能力审视其原生健康应用数据。
在理论层面讲,如此庞大的数据宝库将能够为B2B及B2C企业带来集中且立足实践行为的洞察结论,进而以前所未有的方式开启新的机遇大门。然而,面对着一系列重大的技术性与财务性障碍,很多企业实际上并不清楚自己的下一步大数据战略该走向何处。其已经开始在数据挖掘领域试水,但尚未制定出一套能够顺利迈进的坚实战略思路。
为何存在挑战
截至目前,实现大数据技术承诺的最大障碍之一在于庞大的资金投入要求。从当下的情况来看,最为成功的项目往往需要耗资数百万美元,例如沃尔玛的专用数据创新实验室WalmartLabs。然而,这种项目只适用于那些世界上最为庞大的企业,其具备极为雄厚的财力与几乎无穷无尽的资源。很明显,这样的标准对于其它公司而言并不适用,或者说毫无实现的可能。
为何利用大数据技术会呈现出如此明确的资源密集型倾向?答案主要分为以下三个方面:
数据的输入速度极快,且数据来源数量亦急剧增加:移动、云应用、物联网——从用于追踪库存与设备的RF标签到一切接入网络的家用电器——当然,社交媒体亦是一大不容忽视的实时数据来源。
此类新型来源几乎全部在以非结构化或者半结构化格式交付数据,这使得传统的关系型数据库管理方案——即SQL以及几乎一切现代数据库系统的实现基础——毫无用武之地。除了收集及存储方面的挑战之外,合规性要求中的隐私与监管要求亦会带来新的复杂性层。不断发展的标准要求需要完整团队配合先进的技术、管理与维护手段方可实现。
随着在数据复杂度的日益提高,用于管理数据的具体技术方案亦变得更难于使用。Hadoop、Kafka、Hive、Drill、Storm、MongoDB以及Cassandra等开源工具外加一系列专有方案共同构成了独立且相互竞争的方案生态系统,只有具备深厚的技术操作知识方可将其真正应用在商业环境当中。事实上,此类人才资源非常稀缺,大多数非财富五百强企业都无力承担由此带来的高昂开支。
缺失之处何在
可以看到,绝大多数企业仅仅是在努力管理并挖掘自己的存储数据集,而很难实际利用数据中的信息建立自身竞争优势。在实践性、实用性及可行性方面,企业还无法充分运用现有工具发挥数据中的可观潜能。需要明确的是,目前我们并不缺乏良好的大数据工具,事实上我们缺乏的是真正具备效率与有效性的解决方案,这种能够解决数据孤岛及高度依赖性难题的手段既匮乏又难于维护。
为什么?因为截至目前,我们的重点一直放在整合应用程序并建立各类独立工具与平台之间的连接机制,缺少这种桥梁它们将根本无法协作。举例来说,我们需要想办法对接CROM与ERP,或者将销售工具与市场营销自动化机制相整合。
这种应用到应用型方案的问题在于,其完全忽略了数据本身——这意味着数据仍然可能以分裂化、孤立化或者碎片化形式存在。即使应用程序能够彼此连接,如果其各自拥有自己的数据存储形式,那么数据亦无法实现通用。这意味着我们将面对大量不完整或者重复的数据记录,即通常所谓的“脏”数据。任何分析方法都无法利用这样的数据素材提供可靠的结论——因为数据本身就不够可靠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12