京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析-AHP层次分析法
层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Satty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
什么是AHP层次分析法?
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。
层次分析法的基本步骤
运用层次分析法构造系统模型时,大体可以分为以下五个步骤:
1.建立层次结构模型
2.构造判断矩阵
3.一致性检验
4.计算各层权重
5.总体一致性检验
1.建立层次结构模型
层次分析法强调决策问题的层次性,我们必须认清决策目标与决策因素之间的关系。简单地说,就是处理各个因素之间的包含关系,再把它们放在一个层次结构图中。一般地,我们把层次结构图分成3个层次,作为本文的例子,我们以选择旅游地作为问题,演示层次分析法的过程:
目标层:决策的目的、要解决的问题。(选择旅游地)
准则层:考虑的因素、决策的准则。(选择旅游地时会考虑到不同的因素,如景色、费用等)
方案层:决策时的备选方案。(各个景点)
2.构造判断矩阵
建立层次结构图,之后我们就必须讨论同一层因素的权重。仍用上述例子,这时我们要得出c1,c2,c3……对O的影响权重,可把权重记为:
w=[w1 w2 ...wn-1 wn]
可是,当影响因素很多时,权重就非常难估计,而且常常不容易被别人接受。因此Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较。(aij在 1-9 及其倒数中间取值)
aij = 1,元素 i 与元素 j 对上一层次因素的重要性相同;
aij = 3,元素 i 比元素 j 略重要;
aij = 5,元素 i 比元素 j 重要;
aij = 7, 元素 i 比元素 j 重要得多;
aij = 9,元素 i 比元素 j 的极其重要;
aij = 2n,n=1,2,3,4,元素 i 与 j 的重要性介于aij = 2n − 1与aij = 2n + 1之间;
,n=1,2,...,9, 当且仅当aji = n
成对比较矩阵的特点:
(备注:当i=j时候,aij = 1)
这时我们就可以得到判断矩阵,也就是每两个因素的权重比:
(1)
为帮助理解,此处加入一个权重比表(实际使用过程中可省略),假设所得的权重比如下表所示,第二行第一列表示费用与景色的重要性比为2,第一行第二列表示景色与费用的重要性比为1/2,以此类推,转换后可得到矩阵A。
|
|
景色 |
费用 |
居住 |
饮食 |
旅途 |
|
景色 |
1 |
1/2 |
4 |
3 |
3 |
|
费用 |
2 |
1 |
7 |
5 |
5 |
|
居住 |
1/4 |
1/7 |
1 |
1/2 |
1/3 |
|
饮食 |
1/3 |
1/5 |
2 |
1 |
1 |
|
旅途 |
1/3 |
1/5 |
3 |
1 |
1 |

(2)
有了判断矩阵,我们就可以得到各个因素的权重。矩阵A右乘w
Aw=nw (3)
也就是说我们只要令(A-n)w=0和|w|=1,就可以算w。
例如:一个三阶的矩阵a、b、c,判断矩阵为
令(A-3)w=0,就有w=[0.6 0.3 0.1]
3.一致性检验
仔细查看(2),其实是有问题的。判断矩阵可能会出现不一致的情况,表现为(3)不成立。
如果说a比b重要2倍,b比c重要3倍,然后说c比a重要2倍,这就有问题了。这就是所谓的不一致现象。(2)就是出现了这一现象。那么,这时权重又如何确定?
学过线性代数的话,我们知道(3)中,n是A的特殊值,而w是A的特殊向量。在出现不一致的情况下,Saaty等人建议用对应于最大特征根l的特征向量作为权向量w,即
由于λ连续的依赖于aij,则λ比n大的越多,A的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ-n数值的大小来衡量A的不一致程度。
定义一致性指标:
CI=0,有完全的一致性
CI接近于0,有满意的一致性
CI 越大,不一致越严重
定义随机一致性指标 RI:它的值与n的关系如下:
定义一致性比率 :
一般,当一致性比率<0.1时,认为A的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aij加以调整。
一致性检验也就是利用一致性指标和一致性比率<0.1,及随机一致性指标的数值表,对A进行检验的过程
4.计算各层权重
我们最终目的是要确定P1,P2,P3对O的影响权重。
我们先从C1开始,计算出P1,P2,P3的权重,记为
wc1=[wp1 wp2 wp3]T;
同理算出C2权向量wc2,C3的权向量wc3……再回到O,计算出
WO=[wo1,wo2,wo3,wo4,wo5]T
这时P1对O的影响权重就是
k1=wp1*wo1+wp2*wo2+……wp5*wo5
用矩阵的语言来说,说是P1,P2,P3对O的影响权重为:
K=WC*WO
其中,WC=[wc1 wc2 wc3 wc4 wc5]
5.总体一致性检验
定义总体一致性比率:
其中CIi是下层的一致性指标,RIi是下层的随机一致性指标,ai是权重。
同样的,如果CR<0.1,那么一致性在容许范围之内。
层次分析法的注意事项
如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。
为保证递阶层次结构的合理性,需把握以下原则:数据分析培训
1.分解简化问题时把握主要因素,不漏不多;
2.注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12