
数据分析到底分析什么
1、数据分析的意义
从互联网上的词云分析中可以看到,“数据分析”这个词汇的热度很高,然而数据分析到底是什么?从行业的角度看, 数据分析是基于某种行业目的,有目的的进行收集、整理、加工和分析数据,提炼有价值信息的一个过程。再通过分析手段、方法和技巧对准备好的数据进行探索和分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。
2、数据分析的把握方向
而从本质上看,数据分析主要从三方面进行把握:
1)目标,数据分析的关键在于设立目标,专业上叫做“有针对性”;
3)结果,数据分析最终要得出分析的结果,结果对目标解释的强弱,结果的应用效果如何。
3、数据分析的步骤
有了对数据的把握后,那数据的处理过程就很好理解了,主要包括:明确分析的目的和内容、数据收集 、数据处理、数据分析、数据展现和报告撰写等六个步骤。
4、数据分析的工具
有了整体框架的把握后,要分析数据就需要专业的数据分析工具了,而专业的数据分析工具不仅仅要提供日常作为公司KPI考核的一些数据,更要提供公司横纵向多维度的数据,每个数据之间的联系。我们需要找出它每一个属性,这个属性的实体代表什么?后面的属性是什么?如果数据就放在硬盘里面,那数据也仅仅是数据,没有对数据属性的理解洞察和对算法能力的了解 ,那它上升不到Information的阶段。
5、数据分析的多维度
公司日常主要关注的数据作为用公司KPI考核已成主流,例如:新增、留存、激活、渠道、GMV等。但这是否意味着其他数据都没必要看了呢?
如果一个企业老板这样要求团队运营和看自己的数据,那你能想象这个运营团队是怎样使用他的数据,不会研究的很深!其实数据之间都是有关联性的,每一个维度的数据并不能很客观的探索出业务问题的最本质原因。选取主要的几个数据可以作为KPI考核,其他的数据应该重点作为KPI的分析数据。
除了新增、留存、激活、渠道、GMV,我们还要看漏斗分析、用户群、渠道质量、访问序列、热点图等一切可以降低成本的数据。
谐云推出的漏斗分析、用户群、渠道质量评估、访问序列、热点图等就是要填补企业对多维数据监控的缺失。与此同时谐云将继续优化,除了功能的增加,以及保障数据的安全外,在产品功能展现上也将更加直观明了。真正做到为企业细无巨细的提供不同的优化思路。而谐云的一切功能点都是从业分析的本质多维度出发的,没有多余的数据,也没有缺失的数据。
企业对于数据的驾驭,从最基本的获取到整合、治理、探索、分析、行动,这种全能力的建立已经比以往任何时候更为重要。毕竟人口红利已经过去,精细化运营,用数据作为决策才是专业之选。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28