
大数据是如何影响商业决策
现如今,无论哪个行业的企业都在谈论的是——数据。这里说的数据不是任意的数据,而是大数据。
如今我们生活在信息经济体制中,公司采集和分析的数据越多,就能在做重要的商业决策时参考更多的信息。因此,公司不必再盲目地做决定或者只能瞎猜了。而些曾经根本无法测量的参量,如今也可以进行准确地测量。
现如今,大数据非常重要,它已经能够影响到企业的估值。数据不属于公司的有形资产,但拥有着深度见解和长远预测的数据却可以指引企业走向成功。企业的声誉正是经典的案例之一。企业声誉是企业重要的无形资产,如今却可以通过采集的数据进行测算和价值评估。
除此之外,影响企业成功概率的因素还有使用数据的方式和依据数据分析所做的决策。数据变得如此有影响力,其本身也正被用来判定公司的价值。
最重要的决定——选择数据采集工具
选择商业智能软件是整个数据采集过程中最重要的部分之一,因为这是数据采集和分析的工具。许多企业最难通过软件平台来做商业决策,现在市面上有无数的数据采集软件程序,但是它们之间不尽相同,像Tableau及其它在BI领域的主要竞争对手,其数据采集软件程序在考虑用户界面之前就有着很多功能。
就这些软件而言,报告的功能是最重要的,数据的结果就是产生报告,只有数据没有报告,数据就失去其原本的作用了。用户需要定制用来生成报表的数据的呈现方式和数据类型。这样,用户就可以根据自己的核心业务指标来提取数据段。
自动采集数据的功能也极其重要。因为,数据采集应经是繁忙业务中的重要的一环,也是相当耗时的一环。所以,能够智能化采集数据并自动生成报告的软件程序,带来的实用性更强。
当然,能接入数据源也是商业智能分析软件极为重要的组成部分。商业智能软件(BI)获取的数据源越多样化,公司收集和使用的信息就越多。
数据影响重要商业决策的三种途径
根据大数据做出的决策可以在各个层面上对企业带来极大的影响。每个公司都有自己的需求,但是几乎每个公司都能利用大数据,就声誉、收入渠道和生产力方面充分考虑后做出决定。
1.声誉
2014年声誉研究会的年度声誉领袖研究显示:公司最关注的是如何量化衡量他们声誉的方式。同时,企业意识到,其中关键的一点是制定一份有效的舆情策略,提高公众可感知的品牌数据量。
通过对社交媒体平台和企业网站的数据分析,公司可以更好地测估他们在大众的眼中是什么样的形象。同时,他们也可以与客户互动,并从中了解到客户对公司品牌的满意度。这些都在很大程度上影响着公司的声誉。公司能够利用数据做关于品牌化、社交媒体营销和增进客户关系方面的决策。
2.收入渠道
在拥有大量数据的情况下,找到一个新的收入渠道会更加容易。同时,找到推广产品和服务的最佳市场营销渠道也是轻而易举的事情。两者相结合,发布新产品或者新服务的风险更低。大数据能够分析当前交易,用户投诉并改进企业产品。企业可以深入挖掘数据,发现新的机遇。
3.生产力
提高运营效率和生产力是快速提高利润的一个方法。市面上已经有大量的ERP软件,多数ERP程序可以分析从生产线正常运营时间到会计程序的几乎每种业务功能的数据。传感器可以实时追踪卡车和货物的运动,并将得到的大量数据记录到软件程序中。
收集到的数据能够告诉企业主效率低下之处,也能够找出提高生产力的自动化流程。有了大数据,你将能知道谁是生产力最高的员工,什么机器耐用性最高,甚至怎样通过缩短货车路线减少燃料费用的问题,也可以得到解答。生产力的提高的可能性是无穷的,这就是定制报告的重要性所在。
大数据背后有巨大的商业潜力,但是只有企业能够整理数据,找到真正重要的指标,才能更好地利用它。现在企业们或许正坐在一座金矿上,他们需要知道的就是怎样利用这些信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28