
数据分析师如何写出好的数据报告
随着时代的发展,人们每天在互联网上产生大量的数据,对于企业来讲这些数据都是十分宝贵的资源。企业可通过数据挖掘进行战略调整以及营销部署,尤其是对于互联网公司而言,用户行为产生的数据就是企业最宝贵的资源。
数据挖掘(Data mining),又译为资料探勘、数据挖掘、数据采矿。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关。不过目前为止,在企业中存在着很大的数据分析问题,如何进行数据分析,数据挖掘的结果要如何展示,企业中各个部门要如何才能最大化的利用数据分析结果。数据分析在企业主要是由于业务需求驱动的,但从数据分析师角度来看数据分析并不是简单的坐在那里等需求,需求来了就做没有需求就坐在那里等。数据分析师需要进行思考:
数据分析的需求方是谁,是公司的领导层还是销售,还是市场团队或者产品团队。
企业有什么样的资源,企业有什么样的数据,如何将需求方与数据本身的价值进行串联,这是一个非值得思考的方向。
1.最常见的数据分析案例
在企业中同样一份数据报告的需求方有很多,但肯定不是全部的人都需要。作为数据团队,如何将有效的数据传递给最需要的人,这样才能更大更好的发挥数据本身的价值。
2.数据分析师需要思考
在一个企业中,对于各个部门员工的数据培训是不可少的,由于数据报告主要面向企业内部的员工,如何让员工具有一定的数据解读能力就显得非常必要。优酷土豆杜长嵘在数据分析与数据可视化技术聚会上说到:“数据团队按照周与月为单位,为内部员工做数据培训,长久下去数据团队在企业内的地位就会得到显著提升。”
企业知识管理同样是数据团队重要的工作之一,数据团队将每天分析完的数据转化为知识,让每一个需要的人都可以随时随地的得到想要的数据信息。也就不再需要让数据团队将已经存档完毕的数据从新拿出来。
3、数据分析师的十个重要技巧
这是很多人在进行数据解读时犯的错误,只是关注数据的相关性,从相关性解释数据的因果性。作为数据分析人员需要掌握以下十种重要的技巧:
会用一款或以上的数据分析工具
经常浏览数据统计的网站
在数据分析前先进行调研
在分析数据的时候用户体验的角度出发的么并不是以公司利益为主。
了解数据采集的方式以及数据内容和质量内容
熟悉各种样式低量和定位的不同
做一个饥渴的探索者
在企业内部有效的沟通着
街头智慧
防御中带有进攻。
在企业中,数据分析师的角色十分重要。没有数据指引的企业犹如没头苍蝇到处乱飞,相比之下,企业的决策层可以根据数据挖掘提供的相关报表完成企业战略发展的制定。对于数据分析师来说,如何将企业收集的杂乱数据进行分析处理,最终为其他部门提供一份清晰明朗的数据报告就显得格外重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14