
成为合格的数据分析师,从了解行业开始
数据分析学习的内容只多不少。说起数据分析师,可以称之为行业的IT农民工,也可被冠以IT界的行业咨询光环。在我看来,他更像是拥有扎实IT技术和宽阔行业视角的分析掌舵师。
数据分析的学习是个漫长且需要不断磨练的过程。
在数据分析过程中,你是否遇到这些坑?
A : 有很多学习路径,但还是无从下手
B : 找了一堆资料,怎么样也看不进去
C : 听大牛讲案例,思路都明白,但就是做不出来
D : 听完案例之后无法举一反三
E : 感觉什么都会一点,操作起来全暴露了
F:行拼命挤进数据分析圈,有问题还是不知道向谁求教
数据分析师的成长路径大体可以分为以下三个阶段:
初级分析师
提出一个业务问题,可以从数据层面进行解答,并保证合理的数据结构、与业务逻辑紧密的关联性,最后保证数据的准确性。
能够熟练进行数据预处理
熟练掌握一门通用技术
中级分析师
能够独立完成高质量的数据分析报告、如产品规划、市场活动等
可以cover住从前期规划到后期细节完善再到后期分析评估的整个过程
高级分析师
能够独立负责一组模块级别的项目,带领团队全面解决问题,实时把控基层数据分析师的工作质量
技术方面,能全盘熟悉数据分析的整个过程,包括对数据采集、埋点、造型和数据清洗工作
能够提出对业务痛点的有建设性的解决方案
一张图了解数据分析师的职业生涯规划
一个合格数据分析师,从了解行业开始
一个合格数据分析师,必定熟知业务,为什么这么说呢?因为大多有数据分析需求的,都是由于业务上某某问题需要挂上流程,或者某些地方需要埋点以便未来决定产品的优化方向,抑或是公司未来战略需要调整,需要数据分析来做支撑。
既然明白了了解行业的重要性,那如何去了解一个行业呢?
如何快速了解一个行业
1、探索行业的商业价值及市场格局
了解一个行业要先分析这个行业存在的价值,行业的产业链是什么样的,涉及到多少环节,每个部门的既有利益获得所依赖的关键因素是什么,因为这有可能成为你数据分析的总要指标。此外还要了解这个行业是否存在垄断现象,垄断意味着掌握着产业的定价权。
2、阅读财报-杜邦分析法
为什么要阅读财报?因为从财报中可以获取公司的所有权性质、主营业务、主要客户、收入结构、成本结构、员工规模、人才结构,更高深的可以了解公司的战略方向和主要承担的风险。
3、阅读一本综述性行业书籍
书是最好的老师,它能帮你快速梳理行业知识,提供系统性的人是。例如你是保险行业,可以看一下《风险管理与保险》,旅游行业可以看一下《旅游零售行业经营方式》。
4、行业资讯+行业人士访谈
熟知了行业也要经常关注一些行业资讯。资讯的获取可以通过投资机构的行业报告,咨询公司的分析报告以及行业交流的网站论坛。线下多参加一些行业数据分析/大数据的交流活动,有大牛指点必然获益匪浅。
5、对比自己的技能素养
要时刻反省自身,是否有能力解决这些痛点,能否提出解决方案。行业的痛点在哪是否了解,还要补充哪些知识。
最后,作为一个数据分析从业者,如果想磨练自己的技能,建议深耕一个行业,打好扎实基础
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14