
成为合格的数据分析师,从了解行业开始
数据分析学习的内容只多不少。说起数据分析师,可以称之为行业的IT农民工,也可被冠以IT界的行业咨询光环。在我看来,他更像是拥有扎实IT技术和宽阔行业视角的分析掌舵师。
数据分析的学习是个漫长且需要不断磨练的过程。
在数据分析过程中,你是否遇到这些坑?
A : 有很多学习路径,但还是无从下手
B : 找了一堆资料,怎么样也看不进去
C : 听大牛讲案例,思路都明白,但就是做不出来
D : 听完案例之后无法举一反三
E : 感觉什么都会一点,操作起来全暴露了
F:行拼命挤进数据分析圈,有问题还是不知道向谁求教
数据分析师的成长路径大体可以分为以下三个阶段:
初级分析师
提出一个业务问题,可以从数据层面进行解答,并保证合理的数据结构、与业务逻辑紧密的关联性,最后保证数据的准确性。
能够熟练进行数据预处理
熟练掌握一门通用技术
中级分析师
能够独立完成高质量的数据分析报告、如产品规划、市场活动等
可以cover住从前期规划到后期细节完善再到后期分析评估的整个过程
高级分析师
能够独立负责一组模块级别的项目,带领团队全面解决问题,实时把控基层数据分析师的工作质量
技术方面,能全盘熟悉数据分析的整个过程,包括对数据采集、埋点、造型和数据清洗工作
能够提出对业务痛点的有建设性的解决方案
一张图了解数据分析师的职业生涯规划
一个合格数据分析师,从了解行业开始
一个合格数据分析师,必定熟知业务,为什么这么说呢?因为大多有数据分析需求的,都是由于业务上某某问题需要挂上流程,或者某些地方需要埋点以便未来决定产品的优化方向,抑或是公司未来战略需要调整,需要数据分析来做支撑。
既然明白了了解行业的重要性,那如何去了解一个行业呢?
如何快速了解一个行业
1、探索行业的商业价值及市场格局
了解一个行业要先分析这个行业存在的价值,行业的产业链是什么样的,涉及到多少环节,每个部门的既有利益获得所依赖的关键因素是什么,因为这有可能成为你数据分析的总要指标。此外还要了解这个行业是否存在垄断现象,垄断意味着掌握着产业的定价权。
2、阅读财报-杜邦分析法
为什么要阅读财报?因为从财报中可以获取公司的所有权性质、主营业务、主要客户、收入结构、成本结构、员工规模、人才结构,更高深的可以了解公司的战略方向和主要承担的风险。
3、阅读一本综述性行业书籍
书是最好的老师,它能帮你快速梳理行业知识,提供系统性的人是。例如你是保险行业,可以看一下《风险管理与保险》,旅游行业可以看一下《旅游零售行业经营方式》。
4、行业资讯+行业人士访谈
熟知了行业也要经常关注一些行业资讯。资讯的获取可以通过投资机构的行业报告,咨询公司的分析报告以及行业交流的网站论坛。线下多参加一些行业数据分析/大数据的交流活动,有大牛指点必然获益匪浅。
5、对比自己的技能素养
要时刻反省自身,是否有能力解决这些痛点,能否提出解决方案。行业的痛点在哪是否了解,还要补充哪些知识。
最后,作为一个数据分析从业者,如果想磨练自己的技能,建议深耕一个行业,打好扎实基础
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28