京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代对社会生活的影响
近来,大数据似乎在一夜之间闯入了任何一个关于互联网未来的讨论,成为一个炙手可热无所不包的概念。“大数据时代”的来临也已成为媒体关注的热门话题。无论人们对此持有何种观点,但下列结论是共同的:“大数据时代”的来临己成为不争的事实,大数据作为一种新的资源,将给并正在给我们的社会生活带来深远的影响。
一, 大数据的特点及价值
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有4V特点:一是数据量巨大(Volume);二是数据类型多样化(Variety);三是密度低而价值大(Value);四是处理速度快(Velocity)。
从大数据的本质上来说,“大数据”所代表的是当今社会所独有的一种新型的能力,通过对海量数据进行分析,获得有巨大价值的产品和服务,获取更深刻的洞察力。在大数据时代,数据已经成为一种新的经济资产类别,就像货币或黄金一样。
二, 大数据给社会生活带来的巨大变革
(一)广告投放精准化
据报道美国Target连锁超市创建了一套女性购买行为在怀孕期间变化的模型,通过采集女性用户的购买行为数据并对其进行分析,
就能判断女性用户是否怀孕,并进一步向其推送所需的婴儿用品。不仅如此,如果用户从他们的店铺中购买了婴儿用品,Target在接下来的几年中会根据婴儿的生长周期情况定期给这些顾客推送相关产品,使这些客户形成长期的忠诚度。
同样,在国内,亚马逊和京东商城等购物网站通过数据挖掘技术对用户的行为习惯和喜好进行追踪分析,从大数据背后找到符合用户兴趣和习惯的产品和服务,并向顾客提供个性化的商品推荐。
(二)医疗卫生体系更加精密
通过分析大量用户的搜索记录,比如“咳嗽”、“发烧”等特定词条,谷歌公司能准确预测美国冬季流感传播趋势。和官方机构相比,谷歌能提前一两周预测流感爆发,预测结果与官方数据的相关性高达97%。
对于个人而言,大数据可以为个人提供个性化的医疗服务。过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
(三)社会安全管理更为有序
在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、
微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。
(四)带来新的就业市场
据盖特纳咨询公司预测,大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国人口世界第一,不仅拥有巨大海量的大数据,而且是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
三,大数据带来的挑战
(一) 大数据将使地球上所有人的隐私权受到挑战
随着互联网、移动互联网快速发展和3G 手机的普及,我们每个 人几乎每时每刻都在产生数据,而这些数据不再私有、不再神秘。也 就是说只要我们上网和使用手机,我们的相关数据在毫无知晓的状 态下被一些大数据公司收集。当数据形成资源体现价值时,地球人所面临的共同问题是如何保护自己的隐私权这一棘手的问题,在具有强调集体轻个人的传统的中国,个人的隐私将会受到更大的威胁;即使是在具有完备法律保护隐私权的西方,面对大数据时代的到来,也颠覆了当下隐私权保护法以个人为中心的思想。特别是数据价值与作何用途,既使是收集者也无法事前告知,这是因为海量数据经过大数据
挖掘,就会产生许多意想不到的新用途。因此,如何完善隐私权的法律体系与提高保护个人隐私权的伦理道德水平,成为了在大数据时代下夯实保护人类尊严和个人自由的基石。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12