京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据中数据挖掘技术的挑战
首先,数据挖掘简单的来说就是从一堆数据里面找有价值的东西。现在数据也是资产,将来会有一个经营数据的公司。所以数据是新的石油,我们要从这里采矿,练成各种各样有用的东西。所以谁拥有数据,谁就拥有未来,数据是企业未来的核心竞争力。
大数据的一个特点是数据量大,它必须达到一个程度,大数据在2012年的时候已经有PB级了。 大数据的结构是非结构化的,我们很难用表格存起来的。而且这个不能进行形式化的数据占85%以上,目前用传统方法只能分析15%的量。所以做大数据研究非常重要。另外就是数据密度低,比如视频流,我就想看一个车怎么发生事故的,实际也就几秒钟,但是存量存了非常多,没有用的占大多数,有用的只有那么几秒钟,所以价值的密度比较低,但是我们就要这一点,但是不能因为别的没有价值就把它去掉,所以这对存储提出了非常大的挑战。
大数据分析的要求跟传统的数据分析有很多不一样。第一个大数据分析更注重有效性,而不是完整性。时效性的数据就是当下要做决定时候的数据,不需要分析得非常准确,但是要非常快。不需要对原来十年的数据再加上今天的数据,否则的话你的效率非常低。另外要注重宏观性而不是微观性,我们要掌握数据隐藏的一些大的规律,十年的规律、五年的规律等等。
第二个是数据复杂,对于分析模型的建立提出了更多挑战。Hadoop平台是大数据分析的平台,很多公司都在这个基础上开发了自己的东西,来提供给其他的企业进行分析,包括客户关系分析、用户体验的分析,但实际上如果大家都去这个平台,有非常大安全性风险。所以用一个开放的平台,安全性是非常紧迫的事。
第三个就是分析,大数据的噪声非常多,去噪声技术的要求更强烈。还有大数据的新型表示方法,还有大数据的存储成本,大数据存储要人维护,要人备份,要人检查。还有半结构和结构化的高效处理。视频怎么处理,图片怎么处理,文本怎么处理,所以要精确的分析要依靠技术。
挑战四就是数据动态增长,数据量太大,怎么样对数据进行分布式的并行的处理?
挑战五是大数据的可视化,让不懂数据的人看得懂,要让决策者们看得懂,这是要有很多的智慧的。而对大数据来说,得到的结果往往非常的复杂,非常的抽象,你要用图形的方式表达出来让大部分理解,并且用它来指导决策.这是五个我认为比较大的挑战。
灵玖软件全称灵玖中科软件(北京)有限公司专注于大数据搜索与挖掘的技术创新与服务,提供大数据搜索、大数据挖掘与大数据应用解决方案,以应对大数据的管理、处理、分析并从大数据中获知识与智慧,将用户的大数据困境转变为大数据宝藏。灵玖软件凭借15年的坚持,精耕细作,目前已服务于全球30万家机构,成为大数据分析领域第一引擎。这个平台从2000年开始,写下第一组代码到现在一起伴随着互联网走进大数据时代,现与各大知名互联网公司,企业,单位,机构一起编制中国的互联网中国梦。服务于消费者,服务于企业机构。为你提供大数据一站式解决方案,使数据能够从不同的角度重新组织并获得新的认识。
Hadoop、Spark、还有机器学习、统计、数据可视化、通用的编程语言、创造力和问题解决能力,每一个都非常重要,大数据的分析结果是用来决策的。
简要的总结,大数据时代的到来引起了一场技术革命,将会影响我们生活的方方面面。我们无法逃避大数据时代。大数据时代的数据挖掘技术一定要顺应大数据的新要求和变化。谁掌握了最核心的技术,谁最先引进最前进的技术,谁就将在大数据时代立于不败之地。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28