京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘技术是经由自动或半自动的方法探勘及分析大量的资料,以创建有效的模型及规则,而企业通过数据挖掘可以更加了解他们的客户,进而改进他们的行销、业务及客服的运作。 数据挖掘是数据仓库的一种重要运用。基本上,它是用来将你的资料中隐藏的资讯挖掘出来,所以 Data Mining 其实是所谓的 Knowledge Discovery 的一部份,Data Mining 使用了许多统计分析与 Modeling 的方法,到资料中寻找有用的特征(Patterns)以及关连性(Relationships)。 Knowledge Discovery 的过程对 Data Mining 的应用成功与否有重要的影响,只有它才能确保 Data Mining 能获得有意义的结果。
数据挖掘和OLAP同为分析工具,其差别在于OLAP提供用户一便利的多维度观点和方法,以有效率的对数据进行复杂的查询动作,其预设查询条件由用户预先设定,而数据挖掘,则能由资讯系统主动发掘资料来源中未曾被查觉的隐藏资讯,和透过用户的认知以产生信息。
数据挖掘是计算机科学的一个分支,涉及从大型数据集的提取。这些过程会结合使用统计方法和人工智能。数据挖掘在现代企业把原始数据转换为人工智能的来源。对数据进行操纵,因此能够提供可靠的信息,可以用于决策。这给企业的竞争带来很大的优势,可以依靠他们的数据集提供情报。数据挖掘也被组织在分析实践包括营销、监测科学和检测欺诈行为等各个方面。
还有其他常见的术语与数据挖掘相关的可能,比如数据钓鱼、数据窥探等。所有这些指向不同的数据挖掘应用于抽样较小的数据集,用于生产统计和推断。
数据仓库可以作为数据挖掘和OLAP等分析工具的资料来源,由于存放于数据仓库中的资料,必需经过筛选与转换,因此可以避免分析工具使用错误的资料,而得到不正确的分析结果。
另一方面,数据仓库是一个术语,描述一个系统在一个组织中所使用的数据的集合。这些数据收集在数据仓库提供的是事务性系统,如发票,购买记录,甚至贷款记录。各个点的数据记录被创建然后集合在一起,就是数据仓库。该数据仓库给出的数据报告可以帮助用户业务信息,从而做出有效的决策。
总结:
数据仓库是汇集所有相关数据的一个过程。
数据挖掘是特定的数据收集。
数据仓库是一个工具来节省时间和提高效率,将数据从不同的位置不同区域组织在一起。
数据仓库三层,即分段、集成和访问。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20