
如何和数据分析师打交道
如果你是一名要和组织内的分析师打交道的管理者,要做出更多数据驱动的商业决策,如何提出好问题应该是你要优先考虑的事情。很多管理者对提问感到恐惧,生怕在跟数据相关的问题上露怯。不过,如果你提出了正确的问题,你不仅可以显得博学,而且有可能带来更好的决策结果。
不过,重要的不仅仅是那些你能对数据提出的关键问题,在你提问之后可能发生的对话也同样重要。
1.关于假设的提问
你问:你建立的这个模型背后的假设是什么?
根据他们的回答,你设想的回应:如果没有特别的假设,你应该感到担心。因为每个模型背后都应该有假设。除非你假定样本代表了某个群体,或者之前搜集的数据对于当前的情况仍然具有代表性。
接下来:有什么理由可以说明这些假设不再有效了?
你设想的回应:在这里,你确实要得到一个经过深思熟虑的、切实的回答。唯一辨别假设是否依然有效的可靠办法就是以新采集的数据为基础,重新做一次分析,这可能得花不少钱。或许某一特定的关联只在某一变量向特定方向发生改变之后,才会有效。比如抵押风险模型只有在房价上涨的时候才依然有效。
2.关于数据分布的问题
你问:你搜集的数据是如何分布的?
你设想的回应:如果他无法描述数据分布,那他就是个糟糕的分析师。优秀的分析师早就应该检视过了——而且还能以视觉化的方式把你的数据在任何特殊变量上的分布展示给你看。
如果你有兴趣把一个变量作为另一个变量可能的预测指标,找你的分析师要一份“散点图”,看看数据是否以任何线状形式分布,这表示两个数据之间呈现很强的相关性。
接下来:数据是以正态分布吗?
你设想的回应:如果分析师说数据不是以正态分布(也就是说,呈现一个钟形曲线),那他就得使用不同类型的统计方式(称为非参数统计),因为通常使用标准差和相关分析不起作用。
你可以问分析师,他们如何在数据分布的基础上调整分析。比如说非参数检验经常就需要具有形同统计可靠性的大量实例。
再接下来:有没有特别的异常值?
你设想的回应:如果数据是正态分布而又有一些异常值,你可以问问这说明什么,分析师打算对此采取什么动作。在某些情况下,删除异常值是合理的,比如说,如果他们是代码错误导致的。
看,你已经了解大概的路数了。对话当中,展现你对此很感兴趣,也具备一定的知识,而且你的目的是为了更好的决策结果,这些都很重要。提出这些问题并不是要表现你懂的比分析师还多,或者分析师对你隐瞒了什么。这跟一个CEO与一个汇报财务数据的部门管理者之间的对话一样,温和的追问是最好的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28