京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多项目还能进行拆分对比分析?怎么可能嘛!
今天想好好跟大家分享一个好用的数据功能,分享之前先来看几个实际的工作场景~
月底了,需要展示各省份本月的订单量分布,总不能用30多条折线显示吧,一堆密密麻麻的线没人想看吧!
想对比分析团队里10个销售经理业绩完成的情况,要出10张图表一一对比,这也太麻烦了吧?
店铺有成百上千个SKU,老板要对比查看每个SKU的销售数据,难道要我做N个图表吗?
负责的网站有几十个推广渠道,想一一对比每个渠道的转化效果,一张图表展示不了效果肿么办?
类似的“痛苦”很多人都遇到过,当涉及到数据多维度对比分析时,比如上面的例子:不同日期维度不同地域维度的数值对比,往往一张数据图表并不能直观地展示效果,又不想直接用表格呈现一“坨”数据,这时”对比拆分”功能就显得尤为重要!
介绍“对比拆分”之前,先普及一下维度、对比、数值(数据小白一定要看,大神可以忽视)是什么:
维度:是事物或现象的某种特征,可以简单理解是X轴,如性别、地区、时间等都是维度。其中时间是一种常用的维度,时间前后的对比称为纵比,如用户数环比上月增长10%;同级单位之间的比较,简称横比,如不同省份人口数的比较、不同公司收入的比较;
对比:当横比、纵比都要涉及的时候(如不同日期不同地域),就需要对比啦!
数值:即指标/度量,用于衡量事物发展程度的单位,可以简单理解是Y轴;
工作场景1:O2O/电商网站想要了解近期各省市的订单金额分布情况,需要的维度:日期、地区,需要的数值:订单金额,先看“美颜”前后对比图吧~
(“美颜”前)
(“美颜”后)
“美颜”前各省的数据堆在一起,N条折线就像一团杂乱的毛线,数据给人的感觉也是一团乱,根本不想看,也无从下手,更别说用数据驱动运营了。
再看看“美颜”后的图表,很清晰地展示各个省份的数据量和变化趋势,图表瞬间转成小清新,感觉美美哒!连老板都夸我,好开心~
赶紧来看看“美颜”过程:
第1步:打开BDP,上传需要分析的工作表,在编辑图表页面将日期(付款日期)拉到维度栏、地区(收货省份)拉到对比栏,订单金额拉到数值栏,记得顺手调个稀饭的颜色;
第2步:在右下方勾选“按对比拆分”,瞬间就出现多个迷你动图啦!不喜欢默认的显示,还可以寄已调整单屏显示的行列数量哦~
酷炫的亮点来了:当你把鼠标hover到数据上,同时按下alt键,就能看某一天各省市的数据啦!左右滑动鼠标还有惊喜哦!
工作场景2:半个月过去了,销售总监想要了解截止目前为止各个销售经理的业绩完成情况;需要的维度:时间、人员名称,需要的数值:合同金额
柱状图只能简单展示每个人本月的订单金额,并不能看出目标完成的进度如何,更别说能直观对比每个人完成的情况了。
计量图的确能展示目标完成的进度,但是只能通过筛选一一查看每个人的进度,并不能一下子展示所有人的。
好了,“对比拆分”又上场啦,拆分后就变成酱紫,噔噔噔~~~(具体操作见上一个例子)
哇塞,每个人的业绩完成情况太直观了。半个月过去了,完成50%及以上的只有3个,总监应该好好鼓励他们,争取更好的业绩,还有7人连50%都没有达到,那就要一一找了解下情况,找到原因及时改进,尤其是低于是30%的销售:
是不是在跟进大客户,项目是否靠谱,是不是属于后半个月发力,大项目能否填补之前的落后?不能的话要怎么做才能达标?
是不是本月跟的客户太少?那应该积极主动去寻找销售线索。
还是跟了很多项目,但成交率很低,那成交率很低的原因又是什么:地域问题、客户性质 or 其他原因呢?根据不同原因有针对性地进行调整。
……
原因有很多,总监可以根据这张图表一一找人了解情况,及时寻找原因并做出调整,争取让本月业绩更上一层楼,这不就是数据和图表呈现的意义嘛!
上述场景都很常见,也只是参考。最后,总结下对比拆分的适用场景:涉及多维度对比分析、同时需要分类呈现数据结果。目前,BDP支持对指标卡、计量图、折线图、柱柱图和条形图按照对比拆分为多个图形。要好好学习对比拆分功能,学好能助你调整、优化运营策略,也许会有意想不到的效果哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27