
SPSS Syntax中的常用函数
SPSS函数是一个常用程序(rountine),并且利用一个或多个自变量(参数)来执行。每个SPSS函数均有一个关键名称(keywordname),且绝不能写错。通常,函数的格式为:函数名称(自变量,自变量,……),某些函数可能只含有一个自变量,而有些函数则可能含有多个自变量,当一个函数含有多个自变量时,各自变量间用逗号(,)隔开,而函数的自变量通常又可分为以下三种:1)常数,如SQRT(100):2)变量名称,如MEAN(VAR1,VAR2,VAR3);3)表达式,如MIN(30,SQRT(100))。总之,SPSS函数和我们平时EXCEL里面函数格式规则并无差别。
SPSS提供了180多种函数,共可分为十多类(SPSS 17.0中大大小小分了18类)。和EXCEL一样,我们也不可能记住所有函数,只要知道一些常用函数,至于其他函数要用的时候再去查找也不迟,下面本人将列举一些常用函数:
(一)算术函数
函数 |
说明 |
范例(x=2.6,y=3) |
ABS(numbexpr) |
绝对值函数 |
ABS(y-x)=0.4 |
RND(numbexpr) |
四舍五入函数 |
RND(x)=3 |
TRUNC(numbexpr) |
取整函数 |
TRUNC(x)=2 |
SORT(numbexpr) |
平方根函数 |
SQRT(y)=1.71 |
MOD(numbexpr,modulus) |
求算两数相除后的余数 |
MOD(y,x)=0.4 |
EXP(numbexpr) |
以e为底的指数函数 |
EXP(y)=20.09 |
LG10(numbexpr) |
以10底的对数函数 |
LG10(x*10)=1.41 |
LN(numbexpr) |
自然对数函数 |
LN(y)=1.1 |
(二)统计函数
函数 |
说明 |
范例(X1=2,X2=5,X3=8) |
MEAN(numexpr,numexpr,…) |
自变量的平均值 |
MEAN(X1,X2,X3)=5 |
MIN(value, value,…) |
自变量的最小值 |
MIN(X1,X2,X3)=1 |
MAX(value, value,…) |
自变量的最大值 |
MAX(X1,X2,X3)=8 |
SUM(numexpr,numexpr,…) |
求和 |
SUM(X1,X2,X3)=15 |
SD(numexpr,numexpr,…) |
求标准差 |
SD(X1,X2,X3)=3 |
VARIANCE(numexpr,numexpr,…) |
求方差 |
VAR(X1,X2,X3)=9 |
CFVAR(numexpr,numexpr,…) |
求变异系数 |
CFVAR(X1,X2,X3)=0.6 |
(三) 缺失值函数
函数 |
说明 |
范例 |
MISSING(variable) |
若变量缺失,则为T或1,否则为F或0 |
MISSING(X1)=1 MISSING(X2)=1 MISSING(X3)=0 |
SYSMIS(numvar) |
若变量是系统缺失值则为T或1,如为自定缺失或非缺失则为F或0 |
SYSMIS(X1)=0 SYSMIS(X2)=1 SYSMIS(X3)=0 |
NMISS(variable,…) |
缺失值个数 |
NMISS(X1,X2,X3)=2 |
NVALID(variable,…) |
有效值个数 |
NVALID(X1,X2,X3)=1 |
VALUE(variable,…) |
忽略自定义缺失值,当作非缺失 |
VALUE(X1)=X1 |
注:X1为使用者界定缺失值,X2为系统缺失值,X3为非缺失值
(四)字符串型函数
函数 |
说明 |
范例 |
ANY(test,value,value) |
若自变量1和后面自变量窜相同则为真,记为1 |
ANY(is, this)=0 ANY(is,this,is)=1 |
CONCAT(strexpr,strexpr) |
将自变量连成一个新自变量 |
CONCAT(th,is)=this |
INDEX(haystack,needle,divisor) |
Divisor在needle最左侧开始出现的位置 |
INDEX(‘this is’,’is’)=3 |
LENGTH(strexpr) |
自变量所含文字的个数(包括特殊字符和空格) |
LENGTH(‘th is’)=5 |
LOWER(strexpr) |
自变量中的大写字母改为小写字母 |
LOWER(‘This’)=’this’ |
UPCASE(strexpr) |
将自变量中的小写字母改为大写字母 |
UPCASE(‘this’)=’THIS’ |
LTRIM(strexpr,char) |
在strexpr开始处去除char所形成的常量,如无char则去除strexpr左侧的空格 |
LTRIM(‘this’,’t’)=’his’ LTRIM(‘this’,’is’)=’th’ LTRIM(‘ this’)=’this’ |
NUMBER (strexpr,format) |
当自变量为数字的文字变量时,按文字变量指定格式转换为数字变量 |
NUMBER(‘23’,F8.1)=2.3 NUMBER(‘23’,F8.0)=23 |
RANGE(test,lo,hi,lo,hi) |
如果自变量1的值包含在自变量集lo至hi的范围内,则为T或1 |
RANGE(‘c’,’a’,’k’)=T |
STRING(strexpr,format) |
按指定格式将自变量转换为文字型变量 |
STRING(3+4,F8.2)=’7.00’ |
SUBSTR(sterxpr,pos,length) |
从strexpr子窜的第pos位置开始取length的字符串长度 |
SUBSTR(‘this is’,6,2)=’is’ |
(五)时间日期函数
函数 |
说明 |
范例 |
DATA.DMY(d,m,y) |
与指定日月年对应的日期 |
DATA.DMY(3,5,99)=05/03/99 |
DATA.MDY(m,d,y) |
与指定月日年对应的日期 |
DATA.MDY(5,3,99)=05/03/99 |
DATA.YRDA(y,d) |
与指定年日对应的日期 |
DATA.YRDA(99,35)=02/04/99 |
DATA.QYR(q,y) |
指定的季节年份对应的日期 |
DATA.QYR(2,99)=04/01/99 |
DATA.MOYR(m,y) |
与指定的月年度对应的日期 |
DATA.MOYR(5,99)=05/01/99 |
DATA.WKYR(w,y) |
与指定的周年度对应的日期 |
DATA.WKYR(38,98)=9/17/98 |
注:1 要正确显示以上函数值,必须先赋予其SPSS得日期型变量(DATA)格式,假设以上日期用mm/dd/yy格式显示,时间则用hh:mm:ss格式表示
2 1<=d<=31、1<=m<=12、1<=w<=52、1<=q<=4
(六)其他函数
SPSS除了上述函数外,尚有日期和时间转换函数(YOMODA\CTMIESDAYS\CTIMEHOURS\MDAYS等)、连续几率密度函数(CDF\BINOM\CHISQ\CDF\EXP\LOGISTIC等),此外还有NORMAL(stddev)可产生平均数为0,标准差为stddev的正态分布随机数字。UNIFORM(max)可产生平均数为0与max间呈均等分布的随机数字。
PS:还可以像EXCEL一样利用脚本编写自定义函数,目前SPSS支持python,Sax Basic(一种与VB兼容的编程语言)等语言,利用new--script可编写出自己需要的函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14