
互联网时代 “大数据”概念正在被滥用
随着国家大数据战略的推行,“数聚”、“精准”等概念纷纷涌现。然而,在各大品牌层出不穷的新玩法下,“大数据”概念被滥用的情况越来越严重。
2016年可谓是中国的“大数据之年”,不仅国家推行“大数据战略”,倡导发展互联网新经济,各行各业也都在谈论大数据的前景。国务院总理李克强5月出席大数据产业峰会并提出大数据驱动信息产业升级的战略导向。大数据一时成为了各大企业都争相推拥的热词。
单纯从字面理解,大数据描述的是一个巨量数据的概念。而在实际的应用上,“大数据”更类似“光年”一样,当光指引到时间中,就成为了描述距离的单位,而把海量的有效数据进行有针对性的整合分析时,他就可以对用户行为进行描述,为我们的生活提供各种各样的决策和指引。
随着国家大数据战略的推行,“数聚”、“精准”等概念纷纷涌现。然而,在各大品牌层出不穷的新玩法下,“大数据”概念被滥用的情况越来越严重。笔者之见,“大数据”能力需要有漫长积蓄过程,绝非“想用就能用”。
在品牌宣传上,大数据的概念常常被有意无意地偷换,主要表现在,“有数据”并不等于大数据。大数据存在5V的特征,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。除了存有数据的基本条件外,还需满足以上五个维度。因此,大数据是一个非常严格的概念。
一个企业的大数据实力如何,主要基于其拥有的数据资产的数量和质量,同时也取决于数据的维度,及对海量数据的开发运用能力(内部算法)。因此不少巨头在不断扩张自己数据库容量的同时,也在通过并购整合,拓宽其自身数据资产的覆盖度和完整度,同时提升自己对数据的运算能力。
以阿里巴巴为例,阿里拥有庞大的用户群体以及十多年的用户数据积累。其大数据资产,无论从数量还是质量上,在中国处于绝对领先地位。但究其根本,其主要数据维度主要集中在电商领域。随着阿里巴巴不断的跨领域扩张,其大数据维度也随之丰富起来。UC浏览器、高德地图、优酷土豆、新浪微博等多个领域产品的加入,阿里大数据基于移动信息领域的矩阵逐渐扩展。截至目前,据不完全统计,阿里大数据矩阵至少包含了电商、阅读、社交、搜索、地图、视频、应用、游戏等维度的用户行为数据,从覆盖率和完整度上,应该是目前BAT三大巨头中最具优势的。
然而,企业收集到“多维度”的数据只是第一步,如何运用、创造价值是接下来面临的考验。在数据价值的“落地”上,各个企业也正在积极探索。
移动互联时代深受“信息过载”的诟病,“如何实现信息与人更为精准的连接”是整个行业未来探索的方向。为了能够给用户提供最佳的内容获取决策,除了需要对数据宽度与厚度进行累积,还需要让数据变得更加“聪明”。通俗来讲,企业需要能够对用户产生的每个数据进行统计、分析与开发,并以此帮助用户做出决策。
以UC为例,从阿里大数据中的高德地图POI数据可以知道用户当下处于的特定场景,根据对“时间 地点”的描述分发用户当下最需要的资讯;此外,在淘宝、神马搜索、优酷等多维数据的互通下,可以知道用户对不同类型资讯的需求。此外,UC的算法还能实现根据不同领域按权重绘画属于该用户的用户画像,在基本的人群聚类下再继续进行需求分层。
以上用户数据的分析及处理,将形成个人定制化数据库,之后,再根据算法进行精准推送,目前常用的推荐算法有三种:
第一代基于“协同过滤”,即收集大量的用户浏览记录,通过相似行为进行关联推荐。由于算法简介,逻辑清晰,可行性强,这种算法被大多数企业采用,例如今日头条、天天快报等都是采用的这种算法,但其也存在缺陷。由于获取数据的手段有限,数据不能够真实的反应出用户对信息的需求,很容易让用户深陷在自己的“兴趣爱好”当中;
第二代基于“搜索”,在分析了用户的核心兴趣点之后,通过隐式搜索的方式,给用户结果,这是在搜索引擎全面普及后出现的数据算法。但是与第一代算法类似的是,不同的人搜索相同的信息有不同的目的,而不同的时间地点搜同样的信息也有不同的目的,用同样的标准衡量用户行为,容易产生误判;好处是,对第一代算法所产生的“信息孤岛”效应有了较大的减弱,较容易形成兴趣圈群。在这方面做得比较好的是一点资讯。
第三代基于“社群 场景”,从“人”的角度,切入到具体的社群,实现“人以群分”;从内容的角度,切入到具体场景,这也是目前算法的发展趋势,比较典型的是以阿里大数据矩阵为依托的UC头条。
不过,就目前而言,实现“社群 场景”精准分发还处于一个比较理想的阶段,体现在“社群 场景”有一系列苛刻的要求,基础要满足的就是精准的用户画像绘制。眼下有此能力的恐怕也只有BAT三家。
当然,一个行业的成功除了能够给用户带来改变,自身还应具备优秀的商业化能力,以实现行业的可持续发展。Facebook、Twitter等企业对大数据在信息流里的商业模式早有示范。其中,Facebook移动广告营收公司总营收的82%(2016年Q1财报),是基于大数据的精准定向广告流为收入带来快速增长。而这种模式能够适用并持续增长,其主要原因是B端与C端的互利,B端的广告在更为精准、高效推送到用户外,C端获取了精准的信息,不会影响用户体验。
如以上所列举的“在高德地图里形成固定的商圈,在UC头条相应商圈的资讯就会推送给你”,这样一次信息与人的精准连接,对用户来说,带来是获取价值信息时间成本的缩小;对内容提供者来说,是潜在受众价值的挖掘;而对广告主而言,是高效、精准传递受众的价值实现。在这里面,满足的是消费测、供给侧、商业测三方需求。
大数据时代不止于“大”,企业对数据资产的厚度与深度的积累成为了决定大数据成败的关键,在大数据被日益滥用的今天,笔者更希望在时代大趋势下,大数据能真正落地,至少不止一个阿里巴巴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28