京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析这几个坑,切勿越陷越深
数据具有客观性,能呈现令人信服的信息依据,所以探寻数据、挖掘规律成为了寻找所需信息的最有利手段之一。但数据也并非万能,有时候会传递错误的信息。在梳理数据分析流程和数据打交道的过程中,“聪明的数据分析师”经常会犯一些错误,导致分析结论于实际经验呈现较大的偏差。
因此,这里总结了数据分析过程中的几个深坑,以告诫大家警惕这几个误区。
坑1:样本容量差异导致结论偏差
某年篮球比赛,A球员的三分投篮命中率为42%,B球员的三分投篮命中率为28%,那么能否说明A球员的三分投篮命中率要比B球员高?
我们分析了数据的来源,发现那年比赛,A球员所在团队只打了10场球,投了28个三分球;B球员所在团队打了19场球,投了57个三分球。
因此,两者对比的样本容量不同,样本环境不同,单从这一数据来做评价,有失偏颇。
所以在选取样本对照时,要保证其它变量一致,提高结论分析的科学性。
2、逻辑混乱,不知因果关系
有同学会笑话,这样简单的逻辑也会搞错,没错,就是这样。
最简单的电商,比如你认为商品评论数和销售量成正相关的关系,即一个商品的评论数量越多,那商品的销售额也会越高;或者相反,一个商品的销售量越多,评论数也会越高,两者是相辅相成的关系。
假如你认定前者,数据分析的结论就会指导我们用一些手段来创造更多的商品评论,以此带动商品销量。
但事实上,并不是所有的商品销量都和评论有很大关联,正向思考一下,商品的销量和价格、质量、活动、广告、页面等等诸多因素有关,每个因素都占据一定权重,销量低应该从不足的地方补上。
因此,在分析前应后果时,要明确目的和逻辑关系,以免混乱。
3、数据表达不科学被蒙蔽
从以上图表来看,似乎第二幅图的结果更喜人,整体均衡向上,左边的数据差异就比较大。
但事实上,两个图表的数据都一样,只是改变了纵坐标值轴的范围,却改变了人的视觉印象。
因此,在做数据分析时,我们需要警惕一些数据处理的小伎俩,不要被数据的视觉效果所蒙蔽。同时在做这类数据分析时,值轴的选取要合理科学,按标准来。
4、唯“数据”论
经常会有人义正言辞地将“用数据说话”,这在有些场景是合理的,但如果过度依赖数据,一方面会做很多没有价值的数据分析;另一方面,也会限制对业务本身的实际思考。
数据分析,仍以“业务”为主,业务的分析一方面来源经验的判断,另一方面依靠数据的辅助分析。很多优秀甚至伟大的产品决策,并非通过数据发现。
很多企业会将数据分析技术交由信息IT部门,而需求者却是业务人员,两者沟通不畅相互脱节会造成很多问题。所以不管是业务人员通过FineBI这一类BI工具的使用,来自助进行分析,参考数据结果来做分析;或是业务人员参与日常报表和数据可视化的开发,都是解决这一类问题的有效途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20