京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析入门方法论
关于数据分析,最重要的是思路和方法论,无论是什么工具,最终的输出无非就是:
有价值的结论(对应分析报告)
有价值的决策过程(对应机器学习模型)
从提出问题入手,例如流量、留存率、新增用户为什么发生变化,练习如何解决问题:
你会提出哪些假设?
如何验证这些假设?(统计方法)
如何清洗和整理数据?(R / Python Pandas / PySpark)
如何可视化?(Excel / FinBI / R ggplot2 / Python matplotlib / Spark Zeppelin)
以怎样的方式展示给非技术人员?(PowerPoint / Tableau / FinBI / iPython Notebook / R Markdown)
如何提出假设?
问题的发现常常是基于常理或者过往经验,所以提出假设的方式大多也是从经验事实出发。比如根据你研究问题的需要,你需要验证哪个需求结论,以及你自己也可以提出基于事实层面上的基本假设。例如用户(UV)上升,但是流量反而减少,UV一般是跟随着流量成正相关的。所以这里不是流量这块除了问题就是用户这边出现新情况。
假设是流量的问题,流量来源于渠道,是否是减少了某些效果差的渠道而专注于一些优质渠道,带来了这样好的结果。
如果是用户问题,用户数的增长是新用户还是老用户带来的,如果都有,各占多少分成。
当然,还得排除一些技术问题,是否是统计口径出现了问题。
如何验证这些假设?
将每一种假设都列举在纸上,每一条都细分,根据主题的类似性做出分类,同一类型的假设,按照可能性依次排列,建立金字塔模型。同一层级划分维度,比如时间、地区等其他属性,构建模型。
如何取数?
SQL是最基本的数据库语言,无论从什么数据库、数据仓库、大数据平台取数,都需要掌握。
Hive和Spark都是基于大数据的,Hive可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计。
清洗和处理数据
没有高质量的数据,就没有高质量的挖掘结果,有时候分毫之差就会影响结果的判断。原始数据出现不一致、重复、不完整(感兴趣的属性没有值)、存在错误或异常(偏离期望值)的数据。这些都可通过
数据清洗:去掉噪声和无关数据
数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中
数据归约:数据立方体聚集,维归约,数据压缩,数值归约,离散化和概念分层等
可视化&展示
分析的结论要用合适的方式表达,可视化工具是最后一步也是不可或缺的工具。
如果使用常规Excel或者传统报表工具,可以将做成的图表贴至PPT中,涉及Excel的高级功能,就需要学习VBA和数据透视表,但Excel适合已经处理好的成品数据。一旦涉及大数据量或频繁链接数据库,一些带有接口的数据可视化工具或报表工具就比较适合。
最后,从提出问题到输出结论,作为数据分析师的你可能使用各种工具,具体要使用哪一种可根据具体情况而定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20