
工业大数据到底是什么及未来发
随着德国工业4.0等制造智能化转型战略的相继实施,工业大数据是近来的热门话题,那么到底什么是工业大数据以及在未来发展中它会给我们带来什么?
1、工业大数据概念与特征
工业数据是指在工业领域信息化应用中所产生的数据。工业大数据是基于工业数据,运用先进大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。工业数据从来源上主要分为信息管理系统数据、机器设备数据和外部数据。信息管理系统数据是指传统工业自动化控制与信息化系统中产生的数据,如ERP、MES等。机器设备数据是来源于工业生产线设备、机器、产品等方面的数据,多由传感器、设备仪器仪表进行采集产生。外部数据是指来源于工厂外部的数据,主要包括来自互联网的市场、环境、客户、政府、供应链等外部环境的信息和数据。
工业大数据具有五大特征。一是数据体量大,主要表现在随着设备数据和互联网数据的涌入,工业数据的存储量将达到EB级别。二是数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等。三是结构复杂,有结构化、半结构化和非结构化等不同类型。四是数据速度需求多样化,有要求实时、半实时和离线三种,生产层级要求实时性,需要达到毫秒级别;管理层级实时性要求不高。五是数据价值不均匀,20%的数据具有80%的价值密度(如产品图纸、试验分析、 加工工艺);80%的数据密度只有20%,需要分析挖掘(如工况情况、图片数据)。
与互联网大数据相比,工业大数据具有自身特点:一是多源性获取,数据分散,非结构化数据比例大;二是数据蕴含信息复杂,关联性强;三是持续采集,具有鲜明的动态时空特性;四是采集、存贮、处理实时性要求高;五是与具体工业领域密切相关。
先进制造企业基于工业大数据的应用,把产品、机器、资源和人有机结合在一起,推动制造业向基于大数据分析与应用基础上的智能化转型。工业大数据能够促进形成企业和消费者之间的信息主动反馈机制,为完善以客户需求为导向的产品全生命周期信息集成和跟踪服务、建立以服务为核心的整体解决方案提供可行路径,将大大提升产品服务价值,为制造业转型升级开辟了新途径。
2、工业大数据发展态势
随着信息化和工业化融合,工业企业生产信息数字化,积累大量数据。工业网络、数据采集、集成、计算和分析技术在工业领域的应用,促使工业数据发挥巨大价值。工业大数据越来越受到工业企业的关注。目前工业大数据发展态势有三个,一是已从理念转向实践,二是工业大数据成为云计算的价值体现,三是工业大数据孕育丰富的工业应用生态。
随着信息化和工业化融合的不断推进和大数据采集、集成、计算和分析技术的发展,很多工业企业已经进入工业大数据实践阶段。大型工业企业在应用方面走在前列。如唐山钢铁集团,通过引入国际最先进的生产线,已实现数据实时采集,深度挖掘工业大数据价值,实现生产实时监测、生产排程、产品质量管理、能源管控等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14