京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,数据科学家的一天是如何分配的
不言而喻,数据科学家的大部分时间都在和数据打交道。不过,面对面的交流、开会也是一个相当重要的组成部分,这一点可能不太容易想到。
数据科学家Tanu George表示,一天通常以会议开始,这些会议可能有着不尽相同的目的,比如确定客户的业务问题,跟踪进展或讨论报告。会议结束后,要开始进行数据处理,主要集中解决会议中提到的问题。下午继续开会,展示数据处理结果,在一天快结束的时候,需要通过电子邮件共享分析结果。
George每天大约50%的时间在开会中度过,20%用于工作,20%用于解释数据处理结果,包括可视化以及将数据转化为可操作的形式。Ryan Rosario也是一名数据科学家,同时是线上教育网站Springboard的老师,对他来说,和客户开会也是一个非常重要的组成部分。很多时候,他都在考虑客户需要哪种类型的数据。大部分情况下,客户是没有数据的也不知道通过哪种途径得到数据,而他需要根据客户的需求制定计划,从而得到数据。
大部分数据科学家并不是与单个数据打交道,而是试图了解对客户或公司来说,数据意味着什么。人们很喜欢通过分析数据来做决策,但有时并没有合适的数据。作为数据科学家,需要学会筛选合适的数据,运用恰当的数据分析方法,帮助客户做出正确的决策。
工作中最喜欢的部分
George表示,会议是她一天中最喜爱的部分。作为Facebook机器学习的工程师,Rosario认为数据往往是混乱的,或者只有某个特定软件可以理解。作为数据科学家,需要把数据转换成方便理解的格式,他很喜欢向人们展示数据可以做什么。许多人都知道他们需要数据,但他们不知道具体需求是什么,而数据科学家需要像魔术师一样,打开客户的思维可能性。另一位数据科学家Long喜欢很多部分,包括研究问题背景的初始阶段以及找出获取数据的方法。
如何成为数据科学家?
要想成为数据科学家需要做很多方面的努力,现在几乎所有公司的数据都会开放API,而Python的数据处理能力强大且方便,如果你想成为数据科学家(数据分析培训),可以考虑从Python入手。此外,统计学习、数据处理、统计学和计算机科学可能都会涉及。有人可以通过读书很好的学习,但最好的学习方法还是将知识付诸实践。
下一站应该做什么?
随着物联网的发展,George认为未来一定会有更多的数据出现。越关注主流数据就意味着有越多的工作要做。Rosario认为,物联网和流媒体数据将是下一个前沿,数据安全是急需解决的重大问题。数据科学家往往希望成为“独角兽”,这意味着他们想要尽一己之力,解决所有的编码、数据操作、数据分析等工作。术业有专攻,很难有人可以掌握所有东西,但不同的人可以掌握不同的技术。
有哪些建议?
想要做数据科学,Rosario认为至少得是硕士学位。对于遇到的问题,应该试图找到方法并解决它,可以试着从类似于Kaggle的网站寻找数据集,并找出解决方案。
大数据时代,是不是每家公司都需要数据科学家呢?这当然因公司而异,由于目前的软件技术和算法变得越来越先进,无需人力成本的投入就可以完成数据组织和运营。这些高科技手段对企业而言是利好消息,因为企业可以减少做数据科学方面的成本,但数据科学家的就业前景还是不错的,数据科学家也应为企业解决难题,为企业带来价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28