
大数据营销,能为企业带来什么
大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。大数据技术的发展给了大数据营销发展的土壤。
大数据营销究竟能带来什么?
大数据营销,让一切营销行为和消费行为皆数据化
数据流化使得营销行动目标明确、可追踪、可衡量、可优化,从而造就了以数据为核心的营销闭环,即消费——数据——营销——效果——消费。
他认为品牌会把“数据”当成营销运营的核心部分,打造符合企业、品牌行业及企业、产品特质的更加深度的数据体系和数据应用。毕竟数据是海量的,如何运营有限、有效的高质量数据为企业更好的创造价值比大海捞针的粗放式玩儿法要实际的多。然而数字时代,一个品牌不仅仅在收集数据,同时也在制造和影响数据,如何塑造和运营更加有利于企业和品牌营销发展的数据流,必然成为今后品牌营销必须面对的重要课题。因为大数据不是目的,营销投入的关键在于产出,如何合理运用数据最大化影响营销投入的ROI才是最终根本所在。
大数据营销,让广告流程化购买更具合理性
那么怎么衡量大数据网络广告价值呢?所谓的大数据营销不仅仅是量上的,更多的是数据背后对受众的感知,这体现在对大数据的规模,速度、挖掘及预测四个方面。另外王跃表示,对广告来说,产消逆转将导致头脚倒立的新型广告的出现。网络广告领域的探索颇具先见之明,其依托云端的数据库获取到海量可交互的结构与非结构化数据,并由最底层的数据分析平台支撑中上游的应用服务,打通PC和移动互联网的数据通道,逐步催生垂直的产业链形态。
大数据营销,建立一个数据建模,让营销更加精准、有效
目前在营销过程中涉及数据方面的多而杂,这时需要对数据的有效性进行过滤,例如行为噪声,重复数据,非目标用户数据等等。换句话说,大数据时代,数据和处理能力不再是主要矛盾,主要矛盾是如何从数据中获取想要的知识,也就是数据建模即挖掘能力。当然这个问题的求解,需要一些列建模的过程,然后把它转化成为具体的计算问题。
目前的大数据技术虽然可以让营销动作做得更加精准、有效,但做起来并不容易。即便是公认大数据营销的大佬亚马逊、乐天,也经常会被吐槽推荐的东西驴唇不对马嘴,或者是已经买过的东西也会一再推荐。因此,未来基于大数据技术的提升,大数据营销的精准性将带来更多的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14