
R语言的常用函数速查
基本
一、数据管理
vector:向量 numeric:数值型向量 logical:逻辑型向量character;字符型向量 list:列表 data.frame:数据框c:连接为向量或列表 length:求长度 subset:求子集seq,from:to,sequence:等差序列rep:重复 NA:缺失值 NULL:空对象sort,order,unique,rev:排序unlist:展平列表attr,attributes:对象属性mode,typeof:对象存储模式与类型names:对象的名字属性
二、字符串处理
character:字符型向量 nchar:字符数 substr:取子串format,formatC:把对象用格式转换为字符串paste,strsplit:连接或拆分charmatch,pmatch:字符串匹配grep,sub,gsub:模式匹配与替换
三、复数
complex,Re,Im,Mod,Arg,Conj:复数函数
四、因子
factor:因子 codes:因子的编码 levels:因子的各水平的名字nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子table:交叉频数表 split:按因子分组aggregate:计算各数据子集的概括统计量tapply:对“不规则”数组应用函数
数学
一、计算
+, -, *, /, ^, %%, %/%:四则运算ceiling,floor,round,signif,trunc,zapsmall:舍入max,min,pmax,pmin:最大最小值 range:最大值和最小值sum,prod:向量元素和,积cumsum,cumprod,cummax,cummin:累加、累乘sort:排序approx和approx fun:插值diff:差分sign:符号函数
二、数学函数
abs,sqrt:绝对值,平方根log, exp, log10, log2:对数与指数函数sin,cos,tan,asin,acos,atan,atan2:三角函数sinh,cosh,tanh,asinh,acosh,atanh:双曲函数
beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数
fft,mvfft,convolve:富利叶变换及卷积polyroot:多项式求根poly:正交多项式spline,splinefun:样条差值besselI,besselK,besselJ,besselY,gammaCody:Bessel函数deriv:简单表达式的符号微分或算法微分
三、数组
array:建立数组 matrix:生成矩阵data.matrix:把数据框转换为数值型矩阵lower.tri:矩阵的下三角部分 mat.or.vec:生成矩阵或向量t:矩阵转置 cbind:把列合并为矩阵 rbind:把行合并为矩阵diag:矩阵对角元素向量或生成对角矩阵aperm:数组转置 nrow, ncol:计算数组的行数和列数dim:对象的维向量 dimnames:对象的维名row/colnames:行名或列名 %*%:矩阵乘法crossprod:矩阵交叉乘积(内积) outer:数组外积kronecker:数组的Kronecker积 apply:对数组的某些维应用函数tapply:对“不规则”数组应用函数 sweep:计算数组的概括统计量aggregate:计算数据子集的概括统计量 scale:矩阵标准化matplot:对矩阵各列绘图 cor:相关阵或协差阵Contrast:对照矩阵 row:矩阵的行下标集col:求列下标集
四、线性代数
solve:解线性方程组或求逆 eigen:矩阵的特征值分解svd:矩阵的奇异值分解 backsolve:解上三角或下三角方程组chol:Choleski分解 qr:矩阵的QR分解chol2inv:由Choleski分解求逆
五、逻辑运算
,=,==,!=:比较运算符!,&,&&,|,||,xor():逻辑运算符logical:生成逻辑向量 all,any:逻辑向量都为真或存在真ifelse():二者择一 match,%in%:查找unique:找出互不相同的元素 which:找到真值下标集合duplicated:找到重复元素
六、优化及求根
optimize,uniroot,polyroot:一维优化与求根
程序设计
一、控制结构
if,else,ifelse,switch:分支for,while,repeat,break,next:循环apply,lapply,sapply,tapply,sweep:替代循环的函数。
二、函数
function:函数定义 source:调用文件 call:函数调用.C,.Fortran:调用C或者Fortran子程序的动态链接库。Recall:递归调用browser,debug,trace,traceback:程序调试options:指定系统参数 missing:判断虚参是否有对应实参nargs:参数个数 stop:终止函数执行on.exit:指定退出时执行 eval,expression:表达式计算system.time:表达式计算计时 invisible:使变量不显示menu:选择菜单(字符列表菜单)
其它与函数有关的还有:delay,delete.response,deparse,do.call,dput,environment ,,formals,format.info,interactive,is.finite,is.function,is.language,is.recursive ,match.arg,match.call,match.fun,model.extract,name,parse,substitute,sys.parent ,warning,machine。
三、输入输出
cat,print:显示对象sink:输出转向到指定文件dump,save,dput,write:输出对象scan,read.table,load,dget:读入
四、工作环境
ls,objects:显示对象列表 rm, remove:删除对象q,quit:退出系统 .First,.Last:初始运行函数与退出运行函数。options:系统选项 ?,help,help.start,apropos:帮助功能data:列出数据集
统计计算
一、统计分布
每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数 函数,r――随机数函数。比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下 面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:
norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心)unif:均匀,exp:指数,weibull:威布尔,gamma:伽玛,beta:贝塔lnorm:对数正态,logis:逻辑分布,cauchy:柯西,binom:二项分布,geom:几何分布,hyper:超几何,nbinom:负二项,pois:泊松signrank:符号秩,wilcox:秩和,tukey:学生化极差
二、简单统计量
sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计 量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14