
大数据可视化需要避免的3个问题
对于如何厘清目标,取得更好的成绩, 避免常见的可视化的错误,建议如下:
最近有很多人在谈论数据可视化的话题。——几乎同关于大数据的谈论一样多。我们被告知,可视化是了解数据的最佳方式(或唯一的方法),而且如果我们不可视化的话,我们就会落伍。
可视化是增加和分享自己见解的一个伟大的方式,但许多大数据的团队正在以错误的方式来进行可视化。怎么能做错了呢?原来,有几种方式可以破坏数据的可视化。让我们来看看几个最常见的错误。
错误1:显示所有的数据
尽管你曾经在学校里被告知,大多数人并不关心是否能看到你的工作。他们不关心你每天处理多少数据或有多大Hadoop集群。客户和内部用户需要得到具体,相关的答案,而且得到的越早越好。你能给他们提供的答案与他们想要的越接近,他们在寻找答案时就越省力。页面上的不相干信息越多他们寻找相关答案时就越费力。不相关的数据(无论多么有效)就是噪音。
在仪表板上的噪音尤为普遍,其中的指导理念往往是“显示所有的绩效指标。”但大部分绩效指标是正常(和乏味的),不值得一提。显示一切的正常指标使得不正常的指标更易隐藏。
一个更好的仪表盘的方法是只显示有趣或重要的指标。优先考虑什么是重要的,什么是意想不到的,什么是可行的,并且淡化其它的一切。深入挖掘数据也很重要,但仪表盘不是展示这些东西的地方。广泛的概括非可操作的数据较报告来说会更容易处理一些。
错误2:显示错误的数据
这个错误是同第一个错误一样危险。显示信息的子集是好的,只要数据之间是相关的。比如说,如果你关心销售,您可能还关心每个区域的销售以及销售随着时间推移所发生的变化。考虑如何使用这些数据来作出决策。
显示一些密切相关的图表可以作为在一个图表中显示过多的信息,和并没有显示出足够信息之间的一个很好的折衷。几个干净,清晰的图表通常比单一、复杂的数据的可视化更好。
错误三:数据表示不佳
即使在你以正确的数据绘图时,你仍然可能犯错误,大多数奇特的图形类型都很少见到,因为它们并不好用。大部分的可视化需求,可以通过条形图和折线图,散点图,以及(如果干得好)饼图来处理。
想想数据字段之间的重要关系,并考虑在轴上标出这些字段。先按类别,然后按时间或重要性或大小来给数据字段排序。(在没有其他标准时,字母表是最有用的)。使用颜色类别,而不是等级;你可以使用亮度和饱和度来说明等级。使用标签和其他标记选择性地引起人们关注而不会搞乱。
好的设计是:预先思考和规划
避免这些错误的最好办法是,首先专注于你的目标。在考虑你应该呈现出什么样的视觉效果之前先按以下顺序考虑这些问题。
你需要启用什么样的行动(或我们所关心的)?
你需要通知什么决定(以及我们将要怎么办)?
你需要问什么样的问题?
你需要看到什么样的数据?
什么是揭示数据中的重要关系的最佳结构?
你需要突出什么样的数据?
当你回答这些问题时,就可以开始使用正确的数据来设计和实施正确的视觉效果。可能你必须做出一些改变。这是一件好事。反复,测试,尝试不同的方法,测试更多的方法,并再次重复。一个深思熟虑的,面向用户的设计方法将产生有效的,高效的,有用的可视化数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14