京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析技术:数据差异的显著性检验
数据差异的显著性检验是数据分析的重要技术之一。然而,如何正确选择检验方法是很多初学者困惑和容易出现错误的地方。下面为大家总结一下数据差异显著性检验的方法及适用范围。
显著性检验
首先需要理解什么是数据差异的显著性检验。在数据分析中,如果仅仅基于个案(某个数据)的采样数据是没有很强说服力的。例如:一种新药,不能因为一个人使用后,效果良好就大面积地推广,而应该基于大规模的样本判定这种新药是否有效,这就需要验证在大规模样本中实验组数据是否优于对照组数据,二者是否存在显著性的差别。显著性检验的理论就是在这种具体需求下提出来的。
所谓数据差异的显著性检验,是面向两组或多组数据的一种数据分析方法,其目的是对两组数据之间是否存在显著的差异进行判断。一般来说,两组观测数据不可能完全相同,肯定存在或多或少的差异,但研究者关心的是两组数据的差异是否显著。如果差异显著,就可以说两组数据之间存在显著性差异;否则,它们之间的差异不显著,甚至可以说是无差别。
数据差异的显著性可以运用在各类科学研究中,例如,在教学研究中,研究者可以研究某种教学法是否有效。在医学领域,可以研究某种新药是否对患者有效等等。
数据的分类
数据类型的不同,将直接影响到差异显著性检验的使用方法。数据主要可以分成三类:定距变量,定序变量和定类变量。
定类变量:根据定性的原则区分总体中个案类别的变量。定类变量的值只能把研究对象分类,只能决定研究对象是同类或不同类,例如:性别分为男性和女性两类;出生地区分为农村、城市、城镇三类;民族背景分为汉、蒙、回、苗、壮、藏、维吾尔等;婚姻状况分为未婚、已婚、分居、离婚、丧偶等类。
定序变量:区别同一类的个案中等级次序的变量。变量的值能把研究对象排列高低或大小,它是比定类变量层次更高的变量,也具有定类变量的特点,例如:文化程度可以分为大学、高中、初中、小学、文盲;工厂规模可以分为大、中、小;年龄可以分为老、中、青。这些变量的值,既可以区分异同,也可以区别高低或大小。但是,各个定序变量的值之间没有确切的间隔距离,比如大学究竟比高中高出多少,是没有确切的尺度来测量的。
定距变量:区别同一类别个案中等级次序及其距离的变量。它除了包括定序变量的特性外,还能确切测量出个案之间高低、大小次序之间的距离。
定距变量是最常见、区分度最高的变量,这类变量可以被求取均值、方差、标准差和标准误等描述性信息,在数据分析中最受欢迎,被称为高测度数据。定序变量和定类变量则因为数据的特点,通常无法求取它们的均值和方差等信息,被称为低测度数据,需要采用与定距变量不同的分析技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08