京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析没效果,是因为缺少这4种提升!
在数据分析过程中,会遇到各种瓶颈,除去自身技能,分析的内容本身还有很多讲究,你的很多分析反映不出实质,解决不了问题,往往是缺少以下四种提升。
深度
深度是指数据分析对企业的支持程度,当企业面临决策难题时,数据分析要有深度,需要理清楚这三个问题:企业的现状和问题是什么?问题为什么会产生?该怎么解决?
比如某数据分析师做得满意度分析
这样的分析远远不够,虽然通过分析,利用“满意度”来衡量出了各关键指标的大小,但是这样的分析并没有暴露提出哪些指标需要改进,也没有分析和竞争对手相比,满意度水平处在什么地位。
于是,将这样的满意度分析通过象限图展示,增加了重要性维度,就能很明显看出需要改进的地方。
接下来与竞争对手相比,处于水平,可以再增加一系列,可得出结论A的整体表现优于B,但在品类和宣传方面需要改进。
之后可以再细化,从数据上寻找是哪个细化指标的表现使宣传满意度最低。宣传覆盖面和宣传频率,所以接下来就要着手这两方面的问题解决了。
信度
信度是指分析结果的可靠程度,需要满足对比要可比、差异要显著、描述要全面。
1、对比要可比
比如A国与B国交战时期,A国军员的死亡率是9%,居民死亡率是16%,后来征兵是就以这些数据来证明参军更安全,显然不可靠。因为这两个数字的计算基数是不同的,韩军死亡率的基数是身强力壮的军人,而居民死亡率的基数包括了老弱病残者。
2、差异要显著
尤其是企业在利用大数据做精细化分析时,往往要用数据来理解不同指标的差异。那么数据差异多大才能表明不同用户间崔在差异呢?
能否根据满意度的排序就断定低收入者对商场最满意,高收入者最不满意,显然不行,收入这一因素并没有做对照分析,应该列出同一收入水平,其他因素对满意度的影响。
3、描述要全面
最有代表性的例子就是全国平均水平,平均工资只能反映工资的平均水平,并不能刻画工资水平的差异,平均工资的增长并不能以为着每个人真是收入的增长。
效度
效度是指分析的效率,效率的衡量标准有两个:速度和成本,这方面,社交网络分析更效度。
传染病分析的传统方法是国家疾病控制中心从医生、实验室那里收集数据分析疾病的流行性和发病率。当不同的病人在不同地方被诊断时,所有数据经过一定的延迟后,都送到一个中心数据库。几个星期之后,你才会知道你身边的传染病还在什么地方发生了。这样的分析显然是滞后和无效的。无法起到传染病的预警效果。社交网络分析则不同。社交网络分析思路是处在社交网络中心且连接数目较多的中心群体比随机人群更容易影响外界和受到外界的影响。按照这一思路,中心群体比随机人群更容易受到传染病的感染,因此,在同一段时间内中心群体的感染率更大。
通度
数据分析前要了解需求,后期要呈现分析结果。通度即沟通的通畅度,通度高低直接影响数据价值的发挥水平。
提高数据分析的通度有三个原则:
1、能用图表就不用数据
比如左右两边的数据对比
2、能用图片就不用文字
与文字相比,图片更色调化,图表数据图形化的创新,更能让人们产生视觉冲击。
3、能用动态呈现就不用静态
在表达失误随时间的变化而变化时,动态呈现能还原真实,比静态展示更能让人产生身临其境之感.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08