
如何快速做一个简单的数据分析
不管是已经从事或者即将入门数据分析工作的你,可能都曾经历过数据分析到底做什么?数据分析前途怎么样?怎么学习数据分析?如何提升分析能力?等这样的困惑。
我也曾有过这样的经历,尤其在学习过程中,百度很多资料,看了很多知乎大牛的安利鸡汤,暗暗决心有朝一日也要努力晋升成数据大拿。于是,借来一堆专业书籍,觉得这个要学那个要学,啃着各种难以理解又缺乏解释说明的术语定义,惶惶不知所云。
关于数据分析,每个人入门的方式都有所不同,和你的专业背景,工作导向,基础水平等都有关。数据分析工具是手段,业务是内容,不管是先学工具还是先懂业务,一定得配合数据分析方法和掌握思路,这是引导和串联着整个数据分析的全过程。
接下来,既然本文谈的是简单分析,就通过简单易懂的语言、轻量化的工具、明确的分析目的和思路,教大家如何数据分析。
看清本质,数据分析一点都不神秘
数据分析实际上就是维度和指标的组合。
比如这张数据表,销售额和毛利是指标,其余的都是维度。你要分析每天的销售额,那日期就是你要分析的维度,每日销售额的总和就是你的指标。
思考数据分析的目的
上面这张图只是数据库中的一张表。以下列举的案例是要分析某商场的销售情况。
销售情况这个词很宽泛,我们需要将这个目标延伸和细分。了解销售情况的目的是为了判断整一年各时间的销售情况,分析淡旺季,是否要加强活动的力度、优惠促销额度等等;按照各品类或者各品牌的销售额来判断是否要将销售额不好的品牌撤柜还是做跟进一步的宣传推广;按照整个商场的分布,有些销售额不错的品牌是否应该放在受众人群更加集中的地方等等。
分析维度和指标该如何组合
将目的细分之后,就要考虑如何去利用数据。比如我们全年销售情况,就建立以月份为维度,销售额为指标的图表;品牌销售额,就建立以品牌分类为维度,销售额为指标的图表。以此类推,这些都是很简单的图表。
结果该以何种形式呈现
理清楚需要哪些数据之后我们就要着手使用分析工具来制作分析了。
这里,利用FineBI从数据库中拿出了这样四张表,这四张表自动建立联系。
以分析各品牌销售额为例,选择条形图。
同样的在dashboard建立其他分析
到这里只是平面二维展示了三个维度的销售额,但如果想进一步了解楼层有哪些品牌,那个品牌销量最好,或者想了解每个品牌的毛利周分布,这里可以将这三张表联动。
以上就是围绕分析目的-分析维度和指标组合-串联分析联系这样一个思路建立的数据分析,这只是数据分析一个小小的映射,如果要从数据分析的结果来挖掘问题所在,还要做更全面、更深层次的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28