
SPSS单一样本的T检验
如果已知总体均数,进行样本均数与总体均数之间的差异显著性检验属于单一样本的T检验。在SPSS中,单一样本的T检验由“One-Sample T Test”过程来完成。
[例子]
有一种新型农药防治柑桔红蜘蛛,进行了9个小区的实验,其防治效果为:
95%,92%,88%,92%,93%,95%,89%,98%,92%
与原用农药的防治效果90%比较,分析其效果是否高于原用农药。该数据保存在“DATA4-2.SAV”文件中。
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-4所示。或者打开需要分析的数据文件“DATA4-2.SAV”。
2)启动分析过程
在SPSS主菜单选中“Analyze→Compare Means→One-Sample T Test”,打开单一样本T检验主对话框,如图4-5。
图4-5 单一样本T检验变量选择窗
3)设置分析变量
设置检验变量: 从左边的变量列表中选中“防治效果”变量后,点击中部的右拉按钮后,这个变量就进入到检验分析“Test Variable(s):”框里,用户可以从左边变量列表里选择一个或多个变量进行分析。
输入检验值: 在“Test Variable(s)”输入栏里,输入用于比较检验的均值:在本例中为90。
4)设置其他参数
单击“Options”按钮,打开设置检验的置信度和缺失值对话框。
在“Confidence Interval:”框输入置信度水平,系统默认为95%。
在“Missing Values”栏里选择缺失值处理方式:
5)提交执行
输入完成后,在过程主窗口中单击“OK”按钮,SPSS输出分析结果如表4-3和表4-4。
6) 结果与分析
表4-3 单一样本的统计量列表 One-Sample Statistics
表4-4 均值的检验结果 One-Sample Test
在表4-4中,各项的意义分别为: t T统计量; df 自由度; Sig(2-ailed) 双尾T检验的显著性概率; Mean Difference 检验值和实际值的差; 95%Confidence Interval of the Difference 具有95%置信度的范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10