
深入浅出之数据分析四步曲
数据分析四步骤
确定
开始分析之前需要拿到足够的背景信息,更重要的是要和对方一起明确你们共同想要解决的问题/想要验证的假设,更更重要的是确定交付的内容、形式、期限以及可用资源。
未明确确定自己的问题或目标就进行数据分析就如同为定下目的地就上路旅行一样。
当然你可能会碰到一些有意思的现象,有时还可能盼着能兜来兜去地撞上点好东西,但是,谁会说你将有所发现。
分析师常常不够注重自己要解决的问题,他们抛给别人一些信息,借此推卸自己解决问题和建议决策的义务。
客户将根据你的分析作决策,你需要尽量多从他那里了解一些信息,才能确定问题。
你需要摸清对方的心思,才能拟定一个能够解决问题的分析方案。
对客户的了解越深,你的分析越有可能派上用场。
1. 将大问题划分为小问题
你需要将问题划分为可管理、可解决的组块。你无法直接回答大问题,但是通过回答从大问题分解出来的小问题,你就能找到大问题的答案。
2. 将数据分解为更小的组块
图表不会按照你的意愿去设定,你必须自己提炼出所需要精确答案的相关因子及量化值。
首先,将原始数据转化为汇总数据。
然后,找到感兴趣的比较对象分解汇总数据。
进行有效的比较是数据分析的核心。
定性的数据,比如那些背景信息,你也需要进行分解和提取,然后得到一些基础假设,用以分析定量数据。
认真审视之前分解出来的组块。
审视过程最关键的是,比较。
价格的比较,群体的比较,销量的比较,竞争者的比较,营销方案的比较。
然后,你需要堵上自己的信誉,基于比较做出一些假设,然后逐步检验自己的假设。
这个过程,你的心智模型就参与到了这些数据中,通过你的解读赋予数据意义。
比如,你基于一些数据得出的结论,图表,你可以注明是你的判断。
客户将根据你的分析作决策。
你提交给客户的报告要以得到客户理解、鼓励客户以数据位基础作出明智的决策为重点。
你的报告应当【简练】【专业】【直接了当】
报告应该说清楚对方的需求,你依据哪些信息得到哪些结论,给出建议。
数据要能体现市场的情况。
心智模型
你对外界的假设和你确信的观点就是你的心智模型。
心智模型决定你的观察结果,是你观察现实的棱镜。
你无法看到一切,因此你的大脑必须做出选择,以便集中注意力。
如果你了解自己的心智模型,那么你发现重点、开发最相关最有用的统计模型的可能性越大。
你的统计模型取决于你的心智模型,如果用了错误的心智模型,分析就会胎死腹中。
心智模型应当包括你不了解的因素
只要能明确不确定因素,你就会小心防范并想办法填补知识空白,继而提出更好的建议。
考虑不确定因素及盲点会让人感觉不爽,但回报显著。
原始数据
要保存原始数据,并习惯拿处理后的数据和原始数据进行比较
在密集的数据中兜圈子很容易让人“迷路”,要是你迷失了目标,忘记了假设,只要集中注意力完成该完成的数据处理就能扭转局势,优秀的数据分析的根本在于密切关注需要了解的数据。
为一个化妆品公司分析数据,发现广告投入减少,社交网络营销投入增加,但是销量却没有达到预期,即时降价也没能影响销量。给出的建议是重新提高广告投入,看看是否有效果。 后来看到一则新闻,得知该品牌的该产品在少女消费者群体中已接近饱和,增加广告投入没有太大价值。收集更多数据,重新分析后发现新的消费群体,老年男子用该产品做剃须后保养。给出的建议是推出针对老年男子须后保养的产品并推广。
中间经历了【心智模型转变】->【查看不确定范围】->【重新收集信息再分析】
EX: 您希望销量提高多少?您觉得我们怎样才能办到呢?您觉得销量提高多少是可行的?目标销量合理么?竞争对手销量如何?广告和社交网络投入是怎么考虑的?【知道什么】
EX:您对我们的目标客户了解么?目标客户唯一么?销售渠道如何?【不知道什么】
在分析过程中得到了一些错误的、不完整的信息,导致你给出的建议不符合实际。
数据分析是为了更好地决策:开始你需要明确你要解决的问题,最后要给出你的专业建议
所有的数据分析师最终都会被打造成能做出更好决策的人才,你要学的就是在浩如烟海的数据中洞察先机,作出更好决策。
总结
1. 分析之前要明确问题和范围,要找你的客户参与进来
2. 分析最重要的是分解,分解问题也分解数据,
3. 评估最重要的是比较,找到最有价值的比较
4. 评估的过程,你开始把自己已有的知识加入到其中,堵上自己的信誉
5. 分析之后一定要给决策,不要只是呈现一些结论
6. 觉察你的心智模型,因为它会对你的分析过程形成深刻影响
7. 时刻反思有哪些你默认的前提假设其实是未知或不确定的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14