
想学数据分析?先来看看基础入门吧
谁说菜鸟不会数据分析的读书笔记,读完这本书的第一感觉是,excel已经够喝一壶了,不要急着想学SPSS、SAS,还是先从基础的看起吧。
做数据分析切忌为了分析而分析,要有明确的分析目的,一般会借助于一些理论模型来知道分析,比如:
营销方面的理论模型:4P、用户使用行为、STP理论、SWOT等,管理方面的理论模型:PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则。
书中列举的这些理论模型很多都听说过,只是平时处理问题很少用到,或者说没有人带着去切实的拿这些理论解决过实际问题,所以也就在平时很少想起了。不过在看这些方法的原理时,还是觉得蛮牛的。
数据收集常见的就是网络、数据库、调研等。
数据处理有数据清洗以去除垃圾数据,并且进行相应的转化计算。
后面花了很大的篇幅讲数据展现,还是比较全面的,见识了各种数据图表是如何做出来的。
其中讲了平均数、绝对数、百分数等几个以前小学学的概念,捡个现在用的比较多的说下:
倍数是一个数除以另一个数的商。
番数是指原来数量的2的N次方。N是几,就是现在的数据较原来的数据翻了几番。
以月为栗子来说明
2016年8月的数据较2015年8月的数据为同比。
2016年8月的数据较2016年7月的数据为环比。
书中有一个有意思的表格说明了方法论在数据分析中的位置:
作者用数据分析与服装师设计做类比,来说明方法论就像服装的设计图纸一样从整体上指导数据分析按照一定的规则体系完成,而不是抓到一块分析一块。
下面讲讲都有哪些方法论:
这个方法的名字其实就是四个分析因素的首字母缩写,分别是政治(political)、经济(economic)、技术(technological)和社会(social)。
一般用于从宏观层面分析企业或行业所处的环境。
也是英文首字母,何时(When)、何地(Where)、何人(Who)、何因(Why)、何事(What)、如何(How)、何价(How much)。
这个分析方法用途还是蛮大的,可以用于很多场景的分析,比如用户画像、用户的购买行为等等。
这个分析方法,如果你会用思维导图工具的话,一看就明白,其实就是将一个大问题一层层拆分成一个小问题,以便更好地分析问题,查找解决办法。
这个理论还真的是用于营销的,4P分别是产品(Product)、价格(Price)、促销(Promotion)、渠道(Place)。主要用于产品的营销分析。
强烈建议看到本文的小伙伴随便找一组数据在excel的“表格-条件格式”中的各种条件格式试一遍,你会发现,真的很好玩,原来一些看起来很炫酷的功能其实excel是可以轻松实现的。
挺实用的功能,用于多个不连续的空白单元格一次性填充相同内容。具体操作步骤如下:
1、按住ctrl不放,用鼠标左键一个个选中所有空白单元格。
2、选好后,放开ctrl,输入要填充的内容,这时,填充的内容会显示在最后一个选中的单元格中。
3、关键一步,按住ctrl不放,再按enter,这时,所有之前选中的单元格都会被填充上相同的内容。
函数比较难在博客中讲清楚,几个重要的函数,同学们可以自行百度一下具体用法:
取左部字符——left();
取右部字符——right();
字符合并——concatenate();
在表格的首列查找指定数据,并返回表格中需要的其他数据,用于两个表格匹配合并——vlookup();
跟上一个类似,是在表格的首行查找指定数据——hlookup();
年、月、日提取——date();
计算时间间隔长度,常用于工龄计算——dateif();
数据随机抽样——rand();
这也是比这之前一直很苦恼的一个问题,书中讲的方法不错,这里沿用书中的人才评价的例子说明:
如上表,将所有指标建立一个矩阵,一一进行对比重要性,行比列重要,交叉单元格写1,反之写0,比如人品对比动手能力,人品没有动手能力重要,则写0。注意,各指标不与自己做对比。
完成表格后,每一个指标都会有一个自己的得分,得分越高,权重越大:
某指标权重=(某指标重要性合计得分/所有指标的重要性合计得分)*100%
单独列出来,是因为这个excel的这个功能真的很好用,不过在博客也很难讲清楚,还请同学们自行百度一下,“数据透视表”,好用的不能再好用的功能。
书中这部分展示了各种炫酷的图表样式,适合浏览一下,以后用的上可以查阅,这里也做简单罗列:
柱状图、雷达图、条件格式(这个不是图形,是在第4点提到的功能,很强大,可以实现一些炫酷的效果,比如数据条、图标集、迷你图)、平均线图、双坐标图、竖形折线图、矩阵图、气泡图。
总体来看,这本书对我这种只会用excel最最基础功能的小白来说,还是蛮多惊喜的,至少有了一个全局观。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29