京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想学数据分析?先来看看基础入门吧
谁说菜鸟不会数据分析的读书笔记,读完这本书的第一感觉是,excel已经够喝一壶了,不要急着想学SPSS、SAS,还是先从基础的看起吧。
做数据分析切忌为了分析而分析,要有明确的分析目的,一般会借助于一些理论模型来知道分析,比如:
营销方面的理论模型:4P、用户使用行为、STP理论、SWOT等,管理方面的理论模型:PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则。
书中列举的这些理论模型很多都听说过,只是平时处理问题很少用到,或者说没有人带着去切实的拿这些理论解决过实际问题,所以也就在平时很少想起了。不过在看这些方法的原理时,还是觉得蛮牛的。
数据收集常见的就是网络、数据库、调研等。
数据处理有数据清洗以去除垃圾数据,并且进行相应的转化计算。
后面花了很大的篇幅讲数据展现,还是比较全面的,见识了各种数据图表是如何做出来的。
其中讲了平均数、绝对数、百分数等几个以前小学学的概念,捡个现在用的比较多的说下:
倍数是一个数除以另一个数的商。
番数是指原来数量的2的N次方。N是几,就是现在的数据较原来的数据翻了几番。
以月为栗子来说明
2016年8月的数据较2015年8月的数据为同比。
2016年8月的数据较2016年7月的数据为环比。
书中有一个有意思的表格说明了方法论在数据分析中的位置:
作者用数据分析与服装师设计做类比,来说明方法论就像服装的设计图纸一样从整体上指导数据分析按照一定的规则体系完成,而不是抓到一块分析一块。
下面讲讲都有哪些方法论:
这个方法的名字其实就是四个分析因素的首字母缩写,分别是政治(political)、经济(economic)、技术(technological)和社会(social)。
一般用于从宏观层面分析企业或行业所处的环境。
也是英文首字母,何时(When)、何地(Where)、何人(Who)、何因(Why)、何事(What)、如何(How)、何价(How much)。
这个分析方法用途还是蛮大的,可以用于很多场景的分析,比如用户画像、用户的购买行为等等。
这个分析方法,如果你会用思维导图工具的话,一看就明白,其实就是将一个大问题一层层拆分成一个小问题,以便更好地分析问题,查找解决办法。
这个理论还真的是用于营销的,4P分别是产品(Product)、价格(Price)、促销(Promotion)、渠道(Place)。主要用于产品的营销分析。
强烈建议看到本文的小伙伴随便找一组数据在excel的“表格-条件格式”中的各种条件格式试一遍,你会发现,真的很好玩,原来一些看起来很炫酷的功能其实excel是可以轻松实现的。
挺实用的功能,用于多个不连续的空白单元格一次性填充相同内容。具体操作步骤如下:
1、按住ctrl不放,用鼠标左键一个个选中所有空白单元格。
2、选好后,放开ctrl,输入要填充的内容,这时,填充的内容会显示在最后一个选中的单元格中。
3、关键一步,按住ctrl不放,再按enter,这时,所有之前选中的单元格都会被填充上相同的内容。
函数比较难在博客中讲清楚,几个重要的函数,同学们可以自行百度一下具体用法:
取左部字符——left();
取右部字符——right();
字符合并——concatenate();
在表格的首列查找指定数据,并返回表格中需要的其他数据,用于两个表格匹配合并——vlookup();
跟上一个类似,是在表格的首行查找指定数据——hlookup();
年、月、日提取——date();
计算时间间隔长度,常用于工龄计算——dateif();
数据随机抽样——rand();
这也是比这之前一直很苦恼的一个问题,书中讲的方法不错,这里沿用书中的人才评价的例子说明:
如上表,将所有指标建立一个矩阵,一一进行对比重要性,行比列重要,交叉单元格写1,反之写0,比如人品对比动手能力,人品没有动手能力重要,则写0。注意,各指标不与自己做对比。
完成表格后,每一个指标都会有一个自己的得分,得分越高,权重越大:
某指标权重=(某指标重要性合计得分/所有指标的重要性合计得分)*100%
单独列出来,是因为这个excel的这个功能真的很好用,不过在博客也很难讲清楚,还请同学们自行百度一下,“数据透视表”,好用的不能再好用的功能。
书中这部分展示了各种炫酷的图表样式,适合浏览一下,以后用的上可以查阅,这里也做简单罗列:
柱状图、雷达图、条件格式(这个不是图形,是在第4点提到的功能,很强大,可以实现一些炫酷的效果,比如数据条、图标集、迷你图)、平均线图、双坐标图、竖形折线图、矩阵图、气泡图。
总体来看,这本书对我这种只会用excel最最基础功能的小白来说,还是蛮多惊喜的,至少有了一个全局观。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20