
数据分析中常见问题的解决方案及心得体会
在数据分析实践中,你遇到过这样的问题吗?你们的标准误差算对了吗?回测过程中的过度拟合问题怎么解决?聚类分析时的极端值又该怎么处理呢?快来看今天的文章吧,马上告诉你答案。
对标准误差进行正确调整的重要性是不言而喻的,因为错误的标准误差会导致错误的变量显著性,从而得出不可靠甚至错误的结论,使得文章的可信度大打折扣。所以做面板计量的朋友们,你们的标准误差算对了吗?希望这个帖子对大家有帮助!
问题二:
回测过程中的过度拟合问题(backtestoverfitting,附最新文献2篇)
有这样一个"明星"投资分析师,他给他10240位(=10*2^10)潜在客户们宣传他对股票ABC的投资建议。对其中一半客户,他建议买入股票ABC,对另一半客户,他建议卖出。一个月后,这位投资分析师再对其中5120位盈利的客户继续宣传他对股票ABC的投资建议。如同上个月,他对其中一半客户建议买入,对另一半客户,他建议卖出。如此往复10个月,有这么10位客户对他佩服的五体投地,因为他们已经连续盈利10个月了!可是他们不知道这位"明星"投资分析师做了多少失败的投资建议。这是典型的回测过程中的过度拟合问题:只要回测的次数足够多,我们总能找到令人满意的结果。
下面介绍了一种新方法CSCV(CombinatoriallySymmetricCross-Validation)来估计回测中过度拟合的概率大小(ProbabilityofBacktestOverfitting)。这种方法要优于人们通常用的比较样本内和样本外结果(in-samplevs.out-of-sample)的方法。希望对大家在写计量论文中有帮助。
PS:若连续变量不存在大量的0的情况下,可考虑对原始数据进行对数变换解决其正偏态分布的问题,如有大量0存在时,就不能取对数了,因为ln(0)无意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29