京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的坑很大,一开始走上这条路,就要明确基本的方向,依托于核心的思想,不然只会越走越偏,最后觉得山太高水太深,不了了之。
1.数据与数据分析
数据其实就是对事物特征的定性指称以及量化描述,比如一个人的身份证号,年龄,收入,身高等就构成了一组数据:{id:001,age:45,income:10000,height:176}——如果把很多人的这些数据汇成表,便构成了“ 结构化 ”(也就是比较规整一致)的“ 数据空间 ”。
但是呢,有一些或者大部分的数据都不是规整的,也就是分布比较杂乱或者不是按照我们想要的那样分布的(比如一个网页中的文本数据分布),称之为“ 非结构化 ”的数据空间 。
数据分析的本质是什么?那就是——将这些结构化或者非结构化的数据, 映射 到指定格式的数据空间里面,然后进行分析—— 数据分析的基础就是数据空间的映射 。
这句话说的比较绕,但是却非常深刻,它告诉我们,数据分析的一个基础(在实践中也是最重要)的一件事情就是寻找合适的数据空间映射方案——某种程度上就是所谓的 数据清洗 。
2.对于一些工具的看法
沿袭上文,工具则可以分为两种,一是基础性的excel,spss,sas等数据分析软件以及许多数据库管理工具, 它们主要处理的是结构化的数据 ,也就是给你把数据弄成了表的规整数据(当然,这些数据很多时候也需要清洗,不过已经不涉及数据空间映射这个问题了);二是编程语言,包括python,R,Java,Ruby等, 这些语言工具主要是处理数据空间映射和清洗工作的 ,其中,比较常用的是python和R,前者由于其可扩充性,已经在大多数情况下优于后者了。
3.学习:从天而降
所谓“从天而降”指的是从一个比较高的地方下降来学习的方法,好比是拿着一张总体的地图去探索数据分析与挖掘的世界。推荐阅读:《 数据科学实战 》。
其次,请注意一点:python学习,对于 没有任何计算机基础 的人来说, 基本上是开头容易、越往后面越难! (python一开始的类似自然语言的结构很友好,但你到了函数与面向对象的学习的时候,还是必须明确引用变量的变化(也就是数据如何在内存中流动)以及作用域的动态变化等对入门者不友好的问题。)
在这种情况下,《head first python》根本不适合,不要用它学习python!
我的建议是,花时间学习一下计算机的基本原理,然后是C语言,Java等,然后再学python,不然你到后面完全是知其然而不知其所以然!
推荐阅读:《 计算机科学概论(第11版 》
以及:《 疯狂Java讲义 》(这本书虽然讲的是java,但对数据在内存中的流转也有讲,可以作为参考,理解程序的运行。)
最后才是:《 Python基础教程(第2版•修订版) 》
然后可以看看入门的统计学教材:《 深入浅出统计学 》(很快就能看完,我当时半天多一点就看完了。)
以及入门与深入理解数据库原理:《 MySQL必知必会 》+《 数据库系统概念 》
有了技术基础了,再看看《 R语言编程艺术 》
另外,入门者不要选择python3.x,选择python2.7吧。为啥?因为很多重要的模块比如pandas还有网上的许多资料现在还是最多支持到2.7的,你选3.X对于入门那是舍近求远。
最后,可以使用《 利用Python进行数据分析 》将所有知识串接起来,感受pandas以及scipy,numpy中的数据计算 是如何体现数据空间映射这个深刻概念的。
中阶主要是理论学习以及一些比较复杂的应用操作。
1.理论基础:书籍
良好的数学基础是进一步学习的支撑条件。
以下是推荐阅读的书目:
1.概率论与数理统计:《 概率论与数理统计 》,进一步学习概率与统计;
2.高等代数:《 高等代数简明教程(上册) 》,“数据空间的映射”的思想就来自于高等代数;
3.最优化:《 最优化理论与方法 》,参考书,中阶不要细读。
4.数据挖掘:《 数据挖掘导论 》,偏数学,《 数据挖掘 》,偏结构化的数据库;
5.信息检索领域入门:《 信息检索导论 》
6.统计学习理论快速俯瞰:《 统计学习方法 》
7.实战之于python:《 集体智慧编程 》+《 机器学习实战 》
8.实战之于Mahout平台:《 Mahout实战 》
2.实战:利用数据库与数据api,实战学习
(1)淘宝上以及很多百度提供的一些 数据库 : API Store_为开发者提供最全面的API服务 等,都可以下载到数据进行处理,有一些经典的研究数据库,主要是一些大学构建的,也可以用来训练模型;
(2).学习写 网络爬虫 ,基于python,爬取文本数据进行分析,其中,文本数据分析可能涉及到中文的自然语言处理,比较麻烦,有一些模块可以直接使用(比如jieba),如果觉得不理想,可以尝试爬取英文页面。另:写爬虫必须首先理解网页的数据空间,建议阅读:《 Head First HTML与CSS、XHTML(中文版) 》;
(3).苦练 清洗数据 的基本功——因为大多数数据工程师的主要工作都在于此,并且在清洗的过程中,深刻理解数据空间的映射。另,清洗数据必备技能:正则表达式。建议阅读:《 正则表达式必知必会 》;
(4). 混合编程 与 数据可视化 :可以尝试以python为主的混合编程(python+R)以及数据可视化,建议阅读《 ggplot2 》
1.回归
总的来说,数据挖掘、机器学习相关的工作,看着很新,其实只是很久之前的理论知识的应用罢了,在实战领域,并没有多少新的东西。
所以,从技术上讲,我们需要回归到那些最内核的东西。
什么是最内核的东西,那就是: 算法与数据结构 。
知乎上有一些言论,说算法与数据结构一般情况下程序员是用不到的,这句话对于一般的写系统的程序员确实受用,但是对机器学习、数据挖掘的程序员,却恰恰相反:我们的主要工作就是在搞算法和数据结构。
比如贝叶斯网络、人工神经网络,本质上其实还是基于图的算法的应用罢了。
推荐一本书,比《算法导论》好读:《 算法(第4版) 》
2.远行
所谓远行,就是从学习的象牙塔里面走出来,走向实用或者特殊领域,比如: 金融量化分析 。
传统的投资经理,做的专业投资,本质上根根结底是什么?那就是两个字: 分散 。
所谓分散,说大白话就是“把鸡蛋放在多个篮子里面”,但至于怎么放,放多少,都是非常复杂的,传统的手段包括建立 马科维兹模型 与 指数模型 来作为分散的参考模型。
机器学习也是可以来做分散的,并且,知名的文艺复兴技术公司做的“最大熵模型”比传统的那两大模型还要好,还能够持续跑赢大盘。
如果你对机器学习、数据挖掘相关理论有深刻理解的话,你会发现一个事实: 分散本质上就是在寻找有限条件下的最大组合熵! 最大熵模型之所以有效就是因为它使用了超级大的数据量作为基准,得到了相对于传统分散模型更高的熵。
这个要讲很多,确实也比较高阶,我就点到为止,将来再细谈。
3.优化
优化主要是对python执行效率的优化——要知道,很多时候,量化分析对时间的要求非常严格,差之毫厘,损失成百上千万。
这个时候,就需要了解如何优化python。
知道吗?python是用C写出来的, 如果你优化的好,你的python可能比C还要快!
优化问题本质上是一个局部最优与全局最优权衡的问题,有空细讲。
优化的另外一个问题是 数值计算 ,包括矩阵的分块计算、并行计算,MapReduce对大量数据的处理等,这也是比较复杂的,有空细讲。
4.万法归宗:信息论
数据处理的的最高境界,其实是对信息论的深刻理解。
算法优化,大量问题都是把指数问题变为对数问题,其实根本原理是信息论;
量化分析,买入卖出的博弈,每一次交易如何暴露出信息的?
投资组合,如何在限制条件内产生最大熵?
文本挖掘、数据压缩,隐马尔科夫链,如何用最少的信息映射原空间?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27