
数据挖掘工程师的面试问题与答题思路
数据计算平台搭建,基础算法实现,当然,要求支持大样本量、高维度数据,所以可能还需要底层开发、并行计算、分布式计算等方面的知识;
- 文本挖掘,如领域知识图谱构建、垃圾短信过滤等;
- 推荐,广告推荐、APP 推荐、题目推荐、新闻推荐等;
- 排序,搜索结果排序、广告排序等;
- 广告投放效果分析;
- 互联网信用评价;
- 图像识别、理解。
- 商业智能,如统计报表;
- 用户体验分析,预测流失用户。
以上是根据求职季有限的接触所做的总结。有的应用方向比较成熟,业界有足够的技术积累,比如搜索、推荐,也有的方向还有很多开放性问题等待探索,比如互联网金融、互联网教育。在面试的过程中,一方面要尽力向企业展现自己的能力,另一方面也是在增进对行业发展现状与未来趋势的理解,特别是可以从一些刚起步的企业和团队那里,了解到一些有价值的一手问题。
以下首先介绍面试中遇到的一些真实问题,然后谈一谈答题和面试准备上的建议。
1、你在研究/项目/实习经历中主要用过哪些机器学习/数据挖掘的算法?
4、基础知识
2)SVM 的推导,特性?多分类怎么处理?
3)LR 的推导,特性?
4)决策树的特性?
6)GBDT 和 决策森林 的区别?
7)如何判断函数凸或非凸?
8)解释对偶的概念。
9)如何进行特征选择?
11)介绍卷积神经网络,和 DBN 有什么区别?
12)采用 EM 算法求解的模型有哪些,为什么不用牛顿法或梯度下降法?
13)用 EM 算法推导解释 Kmeans。
14)用过哪些聚类算法,解释密度聚类算法。
15)聚类算法中的距离度量有哪些?
16)如何进行实体识别?
17)解释贝叶斯公式和朴素贝叶斯分类。
18)写一个 Hadoop 版本的 wordcount。
……
5、开放问题
1)给你公司内部群组的聊天记录,怎样区分出主管和员工?
2)如何评估网站内容的真实性(针对代刷、作弊类)?
4)路段平均车速反映了路况,在道路上布控采集车辆速度,如何对路况做出合理估计?采集数据中的异常值如何处理?
5)如何根据语料计算两个词词义的相似度?
6)在百度贴吧里发布 APP 广告,问推荐策略?
7)如何判断自己实现的 LR、Kmeans 算法是否正确?
8)100亿数字,怎么统计前100大的?
……
1、用过什么算法?
最好是在项目/实习的大数据场景里用过,比如推荐里用过 CF、LR,分类里用过 SVM、GBDT;
一般用法是什么,是不是自己实现的,有什么比较知名的实现,使用过程中踩过哪些坑;优缺点分析。
2、熟悉的算法有哪些?
基础算法要多说,其它算法要挑熟悉程度高的说,不光列举算法,也适当说说应用场合;
面试官和你的研究方向可能不匹配,不过在基础算法上你们还是有很多共同语言的,你说得太高大上可能效果并不好,一方面面试官还是要问基础的,另一方面一旦面试官突发奇想让你给他讲解高大上的内容,而你只是泛泛的了解,那就傻叉了。
3、用过哪些框架/算法包?
主流的分布式框架如 Hadoop,Spark,Graphlab,Parameter Server 等择一或多使用了解;
通用算法包,如 mahout,scikit,weka 等;
专用算法包,如 opencv,theano,torch7,ICTCLAS 等。
4、基础知识
个人感觉高频话题是 SVM、LR、决策树(决策森林)和聚类算法,要重点准备;
算法要从以下几个方面来掌握:
1)产生背景,适用场合(数据规模,特征维度,是否有 Online 算法,离散/连续特征处理等角度);
2)原理推导(最大间隔,软间隔,对偶);
3)求解方法(随机梯度下降、拟牛顿法等优化算法);
4)优缺点,相关改进;
5)和其他基本方法的对比;
6)不能停留在能看懂的程度,还要对知识进行结构化整理,比如撰写自己的 cheet sheet,我觉得面试是在有限时间内向面试官输出自己知识的过程,如果仅仅是在面试现场才开始调动知识、组织表达,总还是不如系统的梳理准备;
7)从面试官的角度多问自己一些问题,通过查找资料总结出全面的解答,比如如何预防或克服过拟合。
5、开放问题
由于问题具有综合性和开放性,所以不仅仅考察对算法的了解,还需要足够的实战经验作基础;
先不要考虑完善性或可实现性,调动你的一切知识储备和经验储备去设计,有多少说多少,想到什么说什么,方案都是在你和面试官讨论的过程里逐步完善的,不过面试官有两种风格:引导你思考考虑不周之处 or 指责你没有考虑到某些情况,遇到后者的话还请注意灵活调整答题策略;
和同学朋友开展讨论,可以从上一节列出的问题开始。
1、基础算法复习两条线
材料阅读 包括经典教材(比如 PRML,模式分类)、网上系列博客(比如 研究者July的“结构之法,算法之道”),系统梳理基础算法知识;
面试反馈 面试过程中会让你发现自己的薄弱环节和知识盲区,把这些问题记录下来,在下一次面试前搞懂搞透。
2、除算法知识,还应适当掌握一些系统架构方面的知识,可以从网上分享的阿里、京东、新浪微博等的架构介绍 PPT 入手,也可以从 Hadoop、Spark 等的设计实现切入。
3、如果真的是以就业为导向就要在平时注意实战经验的积累,在科研项目、实习、比赛(Kaggle,Netflix,天猫大数据竞赛等)中摸清算法特性、熟悉相关工具与模块的使用。
如今,好多机器学习、数据挖掘的知识都逐渐成为常识,要想在竞争中脱颖而出,就必须做到:
保持学习热情,关心热点;
深入学习,会用,也要理解;
在实战中历练总结;
积极参加学术界、业界的讲座分享,向牛人学习,与他人讨论。
最后,希望自己的求职季经验总结能给大家带来有益的启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27