
我们应该知道的九种市场营销分析方法
市场营销分析对于察觉有关商业洞察力,提高收入和盈收能力,提升品牌认知度都是必不可少的。有了正确的分析帮助,我们可以发掘新的市场、新的客户、发掘未来有发展前景的领域以及更多。本文给出了作者认为非常重要的9个市场营销分析。更多背景资料可以参考作者发表的一篇文章—核心业务分析工具。
商业可以简单的理解为满足客户需求的全部。未被满足的需求分析指的是揭示你的产品、服务、客户满意度以及收入方面是否还有未被满足的需求。对于未被满足的需求分析,有效的工具包括产品评价,定性调查,小组讨论和访谈。你也可以使用类似于Google Trends这样的工具来帮助识别客户都在搜索什么。
提示:现在向你的客户提问是一个非常经济实惠而又快速的办法。例如创建一个论坛,在线小组讨论,亦或是邀请客户关注你的Facebook页面并加入到一个反馈小组里面。
如果对自己的市场规模和潜力不够了解,我们很容易对商业决策的可行性妄下结论。市场规模分析指的是评估你的产品以及服务市场规模有多大,是否有足够的增长潜力。衡量指标包括产量(售出多少)、产值、频率(一个产品或服务的出售频率)。有效数据包括政府公布的数据,行业协会数据,竞争对手财务数据以及客户调查。
提示:仅因为某个市场大并不意味着它是有利可图的——特别地,如果大多数客户想要的某个产品或者服务市场上已经有了,那么他们不太可能会接受另一个产品或服务了。
了解需求对于保持企业的竞争力是至关重要的。需求预测属于预测分析领域,旨在预估消费者可能会购买的产品数量或服务。不同于简单猜测,它是基于过去市场上的历史数据或当前数据作出的估计。此时,分析技术(如时间序列分析)就显得非常有用了。
提示:用于需求预测的数据必须是干净并且准确的。如果不是这样的话,得到的结果将不准确,并且有可能导致你误入歧途。
每个企业都需要知道它自己的一个市场前进方向。市场趋势分析指的是确定市场是否在增长,停滞还是衰落,以及市场变化的快慢。了解市场的规模大小很重要,但了解的市场正趋势上涨还是下跌同样也很重要。为了监测市场动向,你可以做一些商业推演或情景分析以此判断市场未来的一个大概样子。客户调查或小组讨论有一定的帮助作用。
提示:始终警惕外部环境,如立法的修改,社会期望。
传统地,我们被告知我们需要了解我们的客户,以便于我们知道他们是怎样的一些人并找出更多跟他们相似的人。道理虽这样,但另一方面可能更重要——非客户分析。非客户分析指的是了解那些目前还不是你的客户对你的产品,服务或品牌的看法。通过识别出那些不买你产品的人,以此来扩大市场。访谈,问卷调查,焦点小组可以提供帮助。
提示:通过社交媒体的力量,我们可以轻松的获取那些不是你的客户的意见反馈。
任何业务都是在竞争环境中成长的。竞争对手分析对市场营销和战略规划非常重要,它指的是识别你的竞争者是谁,他们的市场定位是怎样的,他们的业务跟自己的业务有什么关系。通过了解自己的优势和劣势,你利用对方的弱点来寻找机会。收集竞争对手数据的方法有很多种,例如商业期刊和报纸,年度报告,产品说明书和营销活动。你甚至可以让你的一个员工、朋友或者家庭成员从你的竞争对手那里购买他们的产品或者服务进行比较。
提示:竞争对手分析的最有用的技巧是去做这件事情!可悲的是,大多数企业没有这样做。
定价分析指的是在产品发布之前找出你的客户愿意为你的产品支付多少钱。它涉及细分市场价格灵敏度分析,尤其在高度竞争的市场非常有用。定价分析需要数据挖掘,预测模型和算法的开发。同时,它还涉及多个并行的商业实验,以此来测量价格变动所带来的变化。
提示:如果你希望通过定价分析来提升收入,请确保给那些为你的产品支付了更多钱的客户提供了更高的价值。
有数以百计的渠道和市场可以用来推广你的产品和服务。销售渠道分析可以帮助你评估现有销售渠道的有效性。你可能会通过不同的渠道来达到您的不同细分市场,但我们有必要知道哪些渠道是有效的,哪些渠道可以到达事半功倍的效果。对于每个现有的市场营销渠道以及那些潜在的尚未使用的渠道,你最好设置一些转化率目标,以便于了解各个渠道的推广效果。
提示:销售渠道分析显然是线上比线下更适合。在线渠道具有数字化的特征,并且经常是构建在市场和销售平台之上的。
品牌分析旨在确定你跟竞争对手相比你的品牌实力如何。品牌不是简单的商品标识和包装,它还包含了客户对你的产品的感受以及它们对客户的寓意。真正的了解客户如何看待自己的品牌很重要,因为这会影响到你的决策和战略方向。你需要从各种渠道来获取客户以及那些潜在客户的数据来进行数据分析,如客服服务记录,销售记录,网络论坛,博客,评论网站和社交媒体等。
提示:互联网为人们如何看待你的平台以及你的业务提供了是一个丰富的信息源。人们乐于去分享他们的想法和感受,所以我们应该努力挖掘这样一个丰富的信息金矿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29