
8个数据分析方法,指导营销策略
营销是企业根据目标用户的需求提供产品和服务,实现盈利的一切经营活动,关于营销的数据分析,有哪些工作可做,该怎么做?
分析思路
1、对谁营销-用户行为的分析
用户行为指挥着营销活动的走向,从新品开发到价格定制;从渠道管理到品牌管理。用户行为分析是营销分析的首要内容,是具有差异化的,也正是这样的差异性,要做市场细分和目标市场的选择,针对目标用户做精准营销。
2、如何营销-4P营销组合
4P营销组合即开发产品、制定价格、蒲剑渠道、市场推广
3、营销效果评估
企业常做的营销效果评估有三种:用户满意度、广告效果评估和品牌资产诊断。
根据以上的营销分析思路,针对营销分析的这三项内容一共有这8种方法。
由于由于篇幅所限,每类各挑一种讲述。
聚类分析
聚类分析是市场细分方法中最常见的。市场细分是根据用户亲疏程度将相似用户聚在一起,使类内差异小、类间差异大的过程。
举个例子,为了研究移动用户手机消费习惯,我们在数据中收集了7个变量:客户编号、工作日上班时期时长、工作日下班时期市场、周末电话时长、国际电话时长、总通话时长、平均每次通话时长来对用户进行细分。采取迭代聚类方法分析,利用SPSS做初步分析、然后标准化处理、聚类分析,利用excel生成如下的数据条:
这样一来可对各类用户做特征描述:
定标比超分析
通常用于渠道的分析研究。定就是定标杆。比如线下实体店,如何评价其表现?通常用渠道覆盖率和渠道效率。
渠道覆盖率=覆盖网点数/该地网店总数,体现渠道的广度。
渠道效率=网店的平均销售量,反映渠道的深度。
标就是建立评价指标体系
比如电商行业在抽取后台数据,利用FineBI做进一步数据分析,通过引用转化率和UV确定一个渠道价值指标,形成一个矩阵分析图就很好判断每个渠道的价值以及优化空间了。
比超是为了比较差异,提出赶超举措。
比如上图的每个渠道比重都是一样的,通过进一步分析每个渠道的影响因素,比如曝光量、投放时间、投放价格等指标对驱动啊影响的程度,得到每个指标的权重,收集各个指标的表现数据来分析。
举个例子,架设有百货、超市、家电连锁三个渠道,每个渠道比重如下
收集各个品牌在各项指标的表现数据
根据覆盖率的指标权重和品牌表现画出如下图:
品牌A与标杆品牌相比,总体处于低势,原因是A品牌在最关键的家电连锁商铺货不足,渠道覆盖率低。关于渠道覆盖率低的分析我们可以进一步做分析,类似的方法,明确影响因素、设置权重、确定评价指标。
漏斗分析
用户行为分为以下几个阶段:产生需求、信息收集、方案必选、购买决策和购后行为。这五个阶段就像漏斗,最终只有一部分转为成功用户,每个阶段都有用户流失。如果能找到每个阶段流失的原因就可以找到改进方向了。
从产生需求到信息收集,用户流失有可能是品牌、产品传播不给力,造成部分用户转向竞品,或者是信息收集的方式不够友好。怎么解决?从解决用户的三个问题下决策:为什么买,哪里买,多少钱。
从信息收集到方案比选和购买决策,这个过程用户的流失取决于企业传达了什么样的信息,是否把优势表达出来,是否贴合的用户的需求。
再到购后行为,这里取决于用户的体验,产品的体验是否达到了用户的预期,操作复杂,视觉糟糕都是导致用户流失的原因。
这五个阶段都有一个转化的比率,或者称为效率,我们常常将这一段时间的效率和前期比,和竞品比,和预期目标比,来总结经验,做出决策,引导更好的转化率。
这样的分析也成成运用到品牌分析里面,对应这样五个阶段
最后,关于营销主题的数据分析,和其他主题一样,需要做一个统一的管理。除此之外,由于如今市场的变动迅速,不可能做到每阶段花大把时间做定期分析,这样的效率是跟不上市场的速度的,建议重视营销战略的企业,能够把这一块纳入到企业的数据化运营管理体系内,利用FineBI构建营销主题的分析,做到实时了解市场动态和企业动态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14