
从零开始学数据分析,新手教程攻略
所有从底层数据工作者往上发展的基本路径:
1. 第一阶段(一般岗位叫数据专员)
基本学会excel(VBA最好学会;会做透视表;熟练用筛选、排序、公式),做好PPT。这样很多传统公司的数据专员已经可以做了
2. 第二阶段(数据专员~数据分析师)
这一阶段要会SQL,懂业务,加上第一阶段的那些东西。大多数传统公司和互联网小运营、产品团队够用了。
3. 第三阶段(数据分析师)
统计学熟练(回归、假设检验、时间序列、简单蒙特卡罗),可视化,PPT和excel一定要溜。这些技术就够了,能应付大多数传统公司业务和互联网业务。
4. 第四阶段(分裂)
数据分析师(数据科学家)、BI等:这部分一般是精进统计学,熟悉业务,机器学习会使用(调参+选模型+优化),取数、ETL、可视化啥的都是基本姿态。
可视化工程师:这部分国内比较少,其实偏重前端,会high charts,d3.js, echarts.js。技术发展路线可以独立,不在这四阶段,可能前端转行更好。
大数据工程师:熟悉大数据技术,hadoop系二代。
数据工程师(一部分和数据挖掘工程师重合):机器学习精通级别(往往是几种,不用担心不是全部,和数据分析师侧重点不同,更需要了解组合模型,理论基础),会组合模型形成数据产品;计算机基本知识(包括linux知识、软件工程等);各类数据库(RDBMS、NoSQL(4大类))
数据挖掘:和上基本相同。
爬虫工程师:顾名思义,最好http协议、tcp/ip协议熟悉。技术发展路线可以独立,不在这四阶段。
往数据发展的基本学习路径可以概括为以下内容:
1. EXCEL、PPT(必须精通)
数据工作者的基本姿态,话说本人技术并不是很好,但是起码会操作;要会大胆秀自己,和业务部门交流需求,展示分析结果。技术上回VBA和数据透视就到顶了。
2. 数据库类(必须学)
初级只要会RDBMS就行了,看公司用哪个,用哪个学哪个。没进公司就学MySQL吧。
NoSQL可以在之后和统计学啥的一起学。基本的NoSQL血MongoDB和Redis(缓存,严格意义上不算数据库),然后(选学)可以了解各类NoSQL,基于图的数据库Neo4j,基于Column的数据库BigTable,基于key-value的数据库redis/cassendra,基于collection的数据库MongoDB。
3. 统计学(必须学)
如果要学统计学,重要概念是会描述性统计、假设检验、贝叶斯、极大似然法、回归(特别是广义线性回归)、主成分分析。这些个用的比较多。也有学时间序列、bootstrap、非参之类的,这个看自己的意愿。
其他数学知识:线性代数常用(是很多后面的基础),微积分不常用,动力系统、傅里叶分析看自己想进的行业了。
4. 机器学习(数据分析师要求会选、用、调)
常用的是几个线性分类器、聚类、回归、随机森林、贝叶斯;不常用的也稍微了解一下;深度学习视情况学习。
5. 大数据(选学,有公司要求的话会用即可,不要求会搭环境)
hadoop基础,包括hdfs、map-reduce、hive之类;后面接触spark和storm再说了。
6. 文本类(选学,有公司要求的话会用即可)
这部分不熟,基本要知道次感化、分词、情感分析啥的。
7. 工具类
语言:非大数据类R、Python最多(比较geek的也有用julia的,不差钱和某些公司要求的用SAS、Matlab);大数据可能还会用到scala和java。
可视化(选学):tableau、http://plot.ly、d3.js、echarts.js,R里面的ggplot、ggvis,Python里的bokeh、matplotlib、seaborn都不错
数据库语言:看你自己用啥学啥
其他框架、类库(选学):爬虫(requests、beautifulsoup、scrapy),日志分析(常见elk)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17