京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家日常工作的15项原则
作为一个数据科学家,我为我的日常工作总结开发出15项原则,这些是我本人也遵循的:
1、不要用数据说谎或吹牛: 对经验性证据要诚实坦率。最重要的是不要用数据自欺欺人。
2、建立永久工具并分享给他人: 花费一些日常工作时间去建立一些能使自己和他人生活变得轻松的工具(译者补充:我为人人,人人为我)。我们可是该死的人类,我们应该是工具的制造者!
3、不断自我教育: 看在佛祖的份上,你可是个科学家哦。去阅读研究生水平的核心数学和统计方法教材吧,永远不要安逸于你在走廊里从同事那得到的对某个方法的拙劣解释,学习基本原理可以让你玩出花样来。阅读最近的论文,参加研讨会,发表和评论论文。对此没有捷径。
4、提高你的技能: 学好一种语言,这样你才能被称为行家里手。其他语言也要学到能与别人沟通。不要忘记,SQL和英语很象,这个星球上每个白痴都能说,但你只有真正掌握它才可以写出优美的诗篇。学习一种编译性语言、一种解释性语言,和R语言。或者只需要学习R!它是丑陋的,但它会给你一个优势。搞透Matlab,你已经不再是没毕业的学生了。学习Unix,即使你平时使用Windows,学习sed和grep等所有那些东西,你可以用bash和powershell做些奇妙的事情。如果你愿意,也学学Hadoop,但要知道它是一个蹩脚的系统。
5、明白数据科学家有个生存意义 “踢人们屁股并让他们震惊”: 每天做一件与此相关的事。(译者注:kick ass在一般情况下指“很厉害;很拽”,但对于数据科学家来说,通常是用数据来揭示人们错误或具有危险性的行为,以此引起关注,所以用本意“踢屁股”反而比较合适)
6、通过向别人展示工作来经常挑战自我:不要害怕一些恶棍会批评你的工作,粉碎他们。如果你想害怕蟑螂的话,那你就不要走路了!
7、不要吝惜知识,也不要害怕问问题: 有些人对他们的知识缺乏信心,不去分享它,原谅他们,但不要成为他们中的一个。
8、先开发出一些思路,然后听取别人的看法,利用他们关于这一领域所知道的知识,但不要让你自己被其束缚: 如果他们真牛到可以用他们所知道的来解决问题,他们就不会来找你要解决方案了。
9、出去和人们在一起,与之交谈,互通有无,他山之石可以攻玉。
10、为你温和的代码建立个令人印象深刻和交互性强的用户界面: 代码是我们的语言(译者注:但不是用户的,所以……),让你的代码通过好的UI来闪耀光辉吧。
11、有效使用可视化技术,避免难以理解的图形: 可视化的唯一用途是使数据易于理解而非令人困惑。
12、学习新技术,努力理解经典技术的原理
13、多揽多做: 这就是天才工作的方式。不要害怕提出创造性的想法。你听说过“低调说话,高调做事”?不要觉得这很华丽,这其实是无能鼠辈工作的方式,不要成为他们中的一个。
14、保持创造力和关注: 你可以通过创造力和关注取得成功(咖啡因对这个有点帮助,但别过头儿)。
15、积极起来,努力工作。如果有人想阻止你,只管碾碎他们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27