
从数据、模型到业务的大数据商业化逻辑
1、市面上关于大数据的各种定义太多,不一而足,此处写在前面的,我先定义一下:大数据,表示极多的数据,而其来源,凡能通过技术手段触达的都算。
2、商业化,即如何使数据产生价值,这个价值并不来源于数据本身,而是来源于数据的被需求方(被需求方可以是甲方也可以是乙方)是否能够在其业务范围内被满足具备一定价值的数据。数据商业化的核心非数据,而是数据模型。
3、数据模型:建立满足需要的业务导向的数据模型(算法),输入需要的可触达来源的获取的数据,并输出相应的结果。比如用户画像分析、数据结构化等等都算数据模型。
这里为什么说是业务导向的数据模型?我举个例子,如果比方说我做一个数据模型要过滤出所有姓名笔画超过20画的人的名字并序列化其信息,这里可能它是一个数据模型,我也可以在互联网获取大量的可输入的数据,问题是这个数据模型没卵用。
所谓业务导向(业务逻辑导向),比如百度凤巢系统,利用凤巢客户系统对百度搜索推广信息进行更为高效地管理与优化,对推广效果更为科学地进行评估。这里输入的就是凤巢客户以及可以收集到的与之相关的所有数据,业务导向的逻辑就是输出可用于决策的对百度搜索推广信息进行更为高效地管理与优化、对推广效果更为科学地进行评估的数据。
业务逻辑定义了数据模型。
4、成熟的大数据商业变现,背后有极其复杂的业务逻辑,比如就像刚刚提到百度凤巢系统。其通过技术实现建模(业务导向),并实现的一个个数据模型,进而不断收集输入物以通过这些又业务逻辑定义的数据模型,输出成具备价值的数据。
5、对于业务逻辑的优化和延展(新特性),业务逻辑决定了数据模型,而输出不一定是最好的结果,所以数据模型要被优化,而数据模型是被业务逻辑定义的,所以业务逻辑要做优化;当有新的业务需求需要在原有业务逻辑上生长出来,从而在定义了业务逻辑后数据模型相应改变从而得到新的输出。
简单画了张图说明下:
6、总结下:大数据的商业化,我从数据、模型到业务逻辑简单梳理了一下,核心是在业务逻辑找到商业化的方向以使得技术实现和数据结果满足业务导向的数据模型落地,从而实现商业化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14