京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分分合合之数据科学家浅析
随着国家大数据行动计划的发布,大数据相关的新词频出,其中“数据科学家”一词更是横空出世貌似高不可攀。那我们来看看这个所谓的数据科学家到底是新瓶装旧酒还是新瓶装新酒?
让我们来问问度娘,她说“数据科学家”由Natahn Yau在2009年首次提出,其是指采用科学方法、运用数据挖掘工具寻找新的数据洞察的工程师。通过字面定义的解读,我们知道“数据科学家”并非那么高大上,其本质还是一名工程师,一名掌握了各种数据挖掘分析方法和工具的工程师。那问题来了,一名数据挖掘分析工程师在大数据时代怎么就摇身一变成为了“数据科学家”呢?
江湖传言,很多跨国公司以及国内的大型互联网企业等都设立了数据科学家这个岗位,与一般意义上的大数据开发者或商业分析师不同,这个岗位的职责要求掌握多种技能集。
天下大势,分久必合,合久必分。数据科学家无非就是一名特种兵,在大数据时代,经济学家亚当.斯密提出的专业分工模式转变成综合多专业的全面手、特种兵,起了个时髦的名字“数据科学家”。尽管数据科学家的角色与传统意义上的数据分析岗位有重合之处,但二者还是有明显区别的。一名数据分析师能够从历史数据中提取出有用的信息并表达出来,供各层级领导决策使用。而数据科学家必须具备深入洞察,可以借助对大数据技术和机器学习等新技术挖掘出数据中隐藏的模式,挖掘出更深的洞见。他们摆脱了这些传统数据处理模式的束缚。
简而言之,数据科学家=业务分析师+数据工程师,需要具备如下技能:
1.对业务的深刻理解。对于挖掘数据价值来说,必须首先对企业业务流程有充分的了解,这些理解不止建立在业务部门的痛点上,还应该以发展的视角看待业务部门的需求,这样才能发挥数据的真实价值。
2.以数学思维看待数据。学习诸如机器学习、数据挖掘、数据分析和统计学等技能十分重要。数据科学家需要从数学的角度对数据进行解释和分析。
3.熟悉常用工具和技术。不仅是Excel、Tableau这样的工具软件,还要对R、Python等语言甚至类似SQL等数据库查询语言均要有所了解。数据提取、探索和假设检验是数据科学实践的核心。
4.具备很强的计算机科学和软件工程背景。这需要掌握包括Java、C++或算法知识和Hadoop。这些技能将用于利用数据来设计系统架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20