京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分分合合之数据科学家浅析
随着国家大数据行动计划的发布,大数据相关的新词频出,其中“数据科学家”一词更是横空出世貌似高不可攀。那我们来看看这个所谓的数据科学家到底是新瓶装旧酒还是新瓶装新酒?
让我们来问问度娘,她说“数据科学家”由Natahn Yau在2009年首次提出,其是指采用科学方法、运用数据挖掘工具寻找新的数据洞察的工程师。通过字面定义的解读,我们知道“数据科学家”并非那么高大上,其本质还是一名工程师,一名掌握了各种数据挖掘分析方法和工具的工程师。那问题来了,一名数据挖掘分析工程师在大数据时代怎么就摇身一变成为了“数据科学家”呢?
江湖传言,很多跨国公司以及国内的大型互联网企业等都设立了数据科学家这个岗位,与一般意义上的大数据开发者或商业分析师不同,这个岗位的职责要求掌握多种技能集。
天下大势,分久必合,合久必分。数据科学家无非就是一名特种兵,在大数据时代,经济学家亚当.斯密提出的专业分工模式转变成综合多专业的全面手、特种兵,起了个时髦的名字“数据科学家”。尽管数据科学家的角色与传统意义上的数据分析岗位有重合之处,但二者还是有明显区别的。一名数据分析师能够从历史数据中提取出有用的信息并表达出来,供各层级领导决策使用。而数据科学家必须具备深入洞察,可以借助对大数据技术和机器学习等新技术挖掘出数据中隐藏的模式,挖掘出更深的洞见。他们摆脱了这些传统数据处理模式的束缚。
简而言之,数据科学家=业务分析师+数据工程师,需要具备如下技能:
1.对业务的深刻理解。对于挖掘数据价值来说,必须首先对企业业务流程有充分的了解,这些理解不止建立在业务部门的痛点上,还应该以发展的视角看待业务部门的需求,这样才能发挥数据的真实价值。
2.以数学思维看待数据。学习诸如机器学习、数据挖掘、数据分析和统计学等技能十分重要。数据科学家需要从数学的角度对数据进行解释和分析。
3.熟悉常用工具和技术。不仅是Excel、Tableau这样的工具软件,还要对R、Python等语言甚至类似SQL等数据库查询语言均要有所了解。数据提取、探索和假设检验是数据科学实践的核心。
4.具备很强的计算机科学和软件工程背景。这需要掌握包括Java、C++或算法知识和Hadoop。这些技能将用于利用数据来设计系统架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06