
谈一谈到底该如何学习数据分析
看到不止一个QQ群里面的有很多人都问过如何学好数据分析,这个一个比较大的命题,很难一两句话弄说的明了,所以这个的问题很难在QQ群里得到一个满意的答案。好吧,那我就以一个这方面的从业者的身份来说一说怎么学习,当然有一点要说的是每个人的思想、方法和经历都是不一样的,我这里所说的不一定是对的也不一定适用于每一个人。
先说一下数据分析。数据分析这个岗位可以说很宽泛很杂,从数据录入员到行业分析师专家都可以认为是数据分析,但是做的事情却相差甚远,当然待遇也天壤之别。所以大家在应聘时不要只看岗位名称,重要的是看看清岗位职责和要求。言归正传,咱们谈谈如何学习数据分析。
1、学科知识:从数据分析涉及到的专业知识点上看,他包含的比较多,主要有统计学、社会学、数学、信息处理等等。这些专业知识不是一时半会能够全面掌握的,学习的唯一捷径就是看书、看视频讲解,看权威的书籍、看全面的知识。学习基础知识没有一蹴即就的方法,因为基础,所以学起来会比较枯燥、比较漫长。如何你想在数据分析方面有长远的发展,希望你能在基础知识上长期坚持的学习下去。
2、软件操作:从事数据分析方面的工作必备的工具是什么,我的回答一定是OFFICE(excel、word、powerpoint……),如果连excel表格基本的处理操作都不会,连PPT报告都不会做,那我只好说离数据分析的岗位还差的很远。但OFFICE并不是全部,要从在数据分析方面做的比较好,你必须会用(至少要了解)一些比较常用的数据分析软件工具,比如SPSS、SAS、水晶易表等等。
3、行业知识与工作经验:这部分知识怎么说呢,要是说在书本上一点学不来那也是骗人的,但是能真正拿为己用的,多是自己在实际的工作过程中经历的学到的。做数据分析一定得和自己所从事的行业紧密相关,不结合业务的数据分析无异于纸上谈兵。而需要要用到数据分析的行业又多的数不清,一句话,只要有数据的地方就需要有数据分析,比如互联网、电商、金融、电信、制造业、零售业等等都是数据分析需求大户,你不可能每个行业都很懂,但是你可以在一个行业很懂,这个懂则需要在工作过程中慢慢积累。
打个形象的比喻,成为一个数据分析精英好比成为一个武林高手(不少朋友应该都看过武侠电影),武林高手必备的两要素:浑厚的内功和华丽的招式。那基础知识和行业内的经验就好比这浑厚的内功,及时你不会作出什么东西来也能保证别人忽悠不倒你,因为你已经是内行了;相对的,各种软件操作就好比华丽的招式,各种各样的输出报告就像“致命”的一招一式。
1、看书
这我看来要全面系统的掌握知识,最好的办法就是看书,看书只有看对书,没有看错书,选择了一本能大幅提高自己能力、思想的书就是看对书。再此,我就不做书籍推荐了,每一块都有不少经典的好书,但是我可以告诉你一个找书的好方法,那就是在网上书店搜索相应的关键词,比如你想找统计学方面的书,那你就搜“统计学”,想看EXCEL方面的书就搜“EXCEL”,你会搜到很多相关的书籍,你可以查看书籍的目录介绍和相关的评价看是否适合你。
2、逛专业的网站
另外一个就是经常逛一些在数据分析方面的论坛、博客。所谓逛,跟逛街一样,我不需要东西同样可以去逛街。所以即使你不想去找某个问题的解决方法同样也许要去逛,因为那里有很多也数据分析方面的知识、见解,很多内容都可能会让你受益匪浅,同时还可以关注到高手大牛以及行业的一些动态。
3、学会向搜索引擎要答案
一个懂得学习人必须是懂得提问的人,那回答你问题的人在哪里,不在现实中就在网络上。当你遇到难以解决的问题时,建议首先找一找手头上的书本能不能帮你解答。如果不能那请你在google、百度上去搜吧,很多问题十有八九在网上可以找到答案(当然那些答案并不一定是再好最优的),如果搜索不到答案,好吧,我承认你的疑问有点小偏了,那就去相关的QQ群或身边的同事朋友那去问吧。
此外,在软件操作方面学会想操作手册要答案
很多关于软件工具的书籍都只是将最主要的操作方法写出来,对于个人而言对一款软件的使用也只是小部分功能,而软件操作手册不一样,它就是软件的使用说明书,每个细致的功能点都会写进去,可以说是最全面的软件字典,在操作手册中几乎可以找到所有的操作方法。
为什么这样安排顺序?
在我看来书本上的答案要比网上的要靠谱,这个靠谱不是说网上没有好的答案,只是说在没有甄别能力的前提下,你看不出哪个答案是最好的。而书本不一样,写书人的知识水品通常要比写出来的书的知识水品要高,书上给出的解答虽说不一定是最好的,但一定不会差到哪去。
为什么要把搜索引擎放在第二位?
因为搜索引擎可以找到几乎全网的内容,一句话概括就是搜到的东西全。学会使用搜索找问题答案是一种能力,是一种方法。
如果以上方法都找不到的话,就只能向朋友网友求助了。
为什么说QQ群不是解决问题(一些非常灵活的问题除外)好办法?
一是,群里确实有高手,但是高手通常都很忙,如果一两句话能解答你的话,他们很乐意帮你解答,如果不是一两句话能说清的,他们通常会沉默;
二是,群里虽然有高手,但是菜鸟也不少,与其得到一个错的结果,不如不问。
你可能要问那QQ群有什么用,我的回答是:解决灵活性问题,交流学习心得,了解他人的动态。
向身边朋友同事请教是本着求人不如求己原则下来说的,如果朋友热情并且自己知道答案的话,肯定会告诉你,及时不知道有时也会帮你找一找解决办法,还有一点是向朋友请教往往还能起到沟通感情的作用。但是有一点,大家工作都很忙,能不去麻烦别人最好还是不去麻烦。
好了,写了这么多也没给大家一点知识性的内容,但都是我个人的一点看法和经验之谈,不妥的地方请同行朋友们多多指正。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14