京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导致人类而非机器人成为数据科学关键的原因有哪些
科幻小说中经常把人类的未来想象成人工智能将会有至高无上的统领权,并且取代人类,完成人类一切可以完成的事情。坦率地讲,当这样的科幻场景开始引入科学技术的时候,并没有太多的好处,因为它会让人类对于“什么样的人会做好事”和“类似深度学习的其他什么样的高科技可以做得更好”这两个问题失去专注能力。
在数据科学世界的深度学习领域当中,我们正在大跨步的向前迈进。我们已经取得了如此巨大的进步,以至于人们会有这样的想法:我们不需要欣然接收数据科学的那些繁文缛节,取而代之的是我们只要再稍微等一下,我们就可以拥有类似Waston这样的盒子来为我们执行一切事务。如果你真是如此设想的话,那么你将要错失良机,接下来就是其中的原因。
1. We Dole Out the Work 人类可以派发工作
深度学习以及大部分的数据科学技术,他们的任务处理能力都被限制在一个相对狭隘的范围内。深度学习一词是对于目前阶段机器学习的最高级形式的一种描述。机器学习作为一个程序系统,其目的就是通过对采用多种统计与算法技术的基于原始数据的复杂模式的观察,发现其中你想要的数据。深度学习技术在图像识别或者其他数据集的某些特性方面以及对于感知任务的有效处理能力,得到了广泛地验证。大多数情况下,你可以将庞大的处理过程化解为一个更加简单的模型,这样你就可以预测出某些事情,而且可以从中找到某些隐藏的提示。深度学习技术的成功代表作包括翻译(比如谷歌翻译和百度翻译)和语音识别(包括苹果手机的Siri和Google Now功能),也包括图像识别,甚至还可以玩视频游戏以及放飞直升机模型。
如今,我们没有理由不为深度学习取得的胜利成果欢呼雀跃。但是迄今为止,深度学习系统也能把一些专业化任务完成的很漂亮,而绝非仅仅能够懂得特定情况下的事务。Zachary Chase Lipton曾经发表了一篇博文,该博文的内容主要是调查了各种指出深度学习系统存在破绽的论文。博文的调查结果证明深度学些系统大都是不堪一击并且能被轻而易举地愚弄。深度学习的关键点在于它懂得什么时候这种技术可以运行,什么时候不运行。
2. We Provide Context 人类提供了场景
无人驾驶汽车本身不知道自己开向哪里也不知道为什么要这么做。我们需要人类提供场景,来形成日常遇到的问题,形成假设的前提并且决定运用什么样的深度学习和数据科学。即使当今大多数的先进系统都还是只能把一件任务做得非常完美的“白痴学者”,但是这种系统本身根本不会为自己提供更宽广的情景。
在任何一种机器学习或者分析问题的领域内,人们所扮演的最重要的角色之一就是决定目标是什么。建立一个可以优化价值的系统很容易,但是结果却发现你一开始打算解决的问题就选错了。在接下来相当长的一段时间内,人类仍旧是唯一的确定难题的主体,也只有人类才能知晓什么才是真正重要的事情,并且可以核实系统是否能够像我们所期待的那样在面对问题领域的直觉理解时发挥预期的功能。
高级系统不知道应该何时将他们自己关闭。在2008年的经济危机之后,人们选择关闭很多交易系统项目,因为人们对这些系统所做的假设条件都没有起到任何帮助作用。在任何情况下,作出关于生死抉择的提议或者带有关键性经济后果的系统往往都是需要人类进行监管、改进并且其决定由人类进行批准的白盒系统。
3. You Can’t Buy Deep Learning 你无法购买深度学习技术
深度学习以及数据科学技术的服务产品化过程不会很快到来。丰田汽车公司将要为应用到无人驾驶汽车技术的深度学习投资十亿美元。到目前为止,无人驾驶汽车并未使用太多的深度学习技术。Google和Facebook正急于将深度学习技术产品化,但是大多数仍旧处于研发阶段。这一切看起来前途似锦,但还是让我们直面现实吧:大多数美国人都在电视上看到过Woston的商业广告,而不是Woston掌权的产品。
在深度学习和数据科学领域内,真正赢家是那些懂得这些强大工具本身的限制并且可以通过正确的方法利用他们去探索未知世界的公司。那些拥有数据科学技能的聪明人,才是让你立即或者在未来迈向成功的关键所在。
数据科学和机器学习的世界总是让人感到兴奋并将不断的壮大。诚然,我们必须意识到机器学习仍旧需要借助人类的维护和监察才能获得成功。我们必须持续加强并整合商业机构当中的数据科学部门,以便于让机器和机器之间有更加畅通的交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06