京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导致人类而非机器人成为数据科学关键的原因有哪些
科幻小说中经常把人类的未来想象成人工智能将会有至高无上的统领权,并且取代人类,完成人类一切可以完成的事情。坦率地讲,当这样的科幻场景开始引入科学技术的时候,并没有太多的好处,因为它会让人类对于“什么样的人会做好事”和“类似深度学习的其他什么样的高科技可以做得更好”这两个问题失去专注能力。
在数据科学世界的深度学习领域当中,我们正在大跨步的向前迈进。我们已经取得了如此巨大的进步,以至于人们会有这样的想法:我们不需要欣然接收数据科学的那些繁文缛节,取而代之的是我们只要再稍微等一下,我们就可以拥有类似Waston这样的盒子来为我们执行一切事务。如果你真是如此设想的话,那么你将要错失良机,接下来就是其中的原因。
1. We Dole Out the Work 人类可以派发工作
深度学习以及大部分的数据科学技术,他们的任务处理能力都被限制在一个相对狭隘的范围内。深度学习一词是对于目前阶段机器学习的最高级形式的一种描述。机器学习作为一个程序系统,其目的就是通过对采用多种统计与算法技术的基于原始数据的复杂模式的观察,发现其中你想要的数据。深度学习技术在图像识别或者其他数据集的某些特性方面以及对于感知任务的有效处理能力,得到了广泛地验证。大多数情况下,你可以将庞大的处理过程化解为一个更加简单的模型,这样你就可以预测出某些事情,而且可以从中找到某些隐藏的提示。深度学习技术的成功代表作包括翻译(比如谷歌翻译和百度翻译)和语音识别(包括苹果手机的Siri和Google Now功能),也包括图像识别,甚至还可以玩视频游戏以及放飞直升机模型。
如今,我们没有理由不为深度学习取得的胜利成果欢呼雀跃。但是迄今为止,深度学习系统也能把一些专业化任务完成的很漂亮,而绝非仅仅能够懂得特定情况下的事务。Zachary Chase Lipton曾经发表了一篇博文,该博文的内容主要是调查了各种指出深度学习系统存在破绽的论文。博文的调查结果证明深度学些系统大都是不堪一击并且能被轻而易举地愚弄。深度学习的关键点在于它懂得什么时候这种技术可以运行,什么时候不运行。
2. We Provide Context 人类提供了场景
无人驾驶汽车本身不知道自己开向哪里也不知道为什么要这么做。我们需要人类提供场景,来形成日常遇到的问题,形成假设的前提并且决定运用什么样的深度学习和数据科学。即使当今大多数的先进系统都还是只能把一件任务做得非常完美的“白痴学者”,但是这种系统本身根本不会为自己提供更宽广的情景。
在任何一种机器学习或者分析问题的领域内,人们所扮演的最重要的角色之一就是决定目标是什么。建立一个可以优化价值的系统很容易,但是结果却发现你一开始打算解决的问题就选错了。在接下来相当长的一段时间内,人类仍旧是唯一的确定难题的主体,也只有人类才能知晓什么才是真正重要的事情,并且可以核实系统是否能够像我们所期待的那样在面对问题领域的直觉理解时发挥预期的功能。
高级系统不知道应该何时将他们自己关闭。在2008年的经济危机之后,人们选择关闭很多交易系统项目,因为人们对这些系统所做的假设条件都没有起到任何帮助作用。在任何情况下,作出关于生死抉择的提议或者带有关键性经济后果的系统往往都是需要人类进行监管、改进并且其决定由人类进行批准的白盒系统。
3. You Can’t Buy Deep Learning 你无法购买深度学习技术
深度学习以及数据科学技术的服务产品化过程不会很快到来。丰田汽车公司将要为应用到无人驾驶汽车技术的深度学习投资十亿美元。到目前为止,无人驾驶汽车并未使用太多的深度学习技术。Google和Facebook正急于将深度学习技术产品化,但是大多数仍旧处于研发阶段。这一切看起来前途似锦,但还是让我们直面现实吧:大多数美国人都在电视上看到过Woston的商业广告,而不是Woston掌权的产品。
在深度学习和数据科学领域内,真正赢家是那些懂得这些强大工具本身的限制并且可以通过正确的方法利用他们去探索未知世界的公司。那些拥有数据科学技能的聪明人,才是让你立即或者在未来迈向成功的关键所在。
数据科学和机器学习的世界总是让人感到兴奋并将不断的壮大。诚然,我们必须意识到机器学习仍旧需要借助人类的维护和监察才能获得成功。我们必须持续加强并整合商业机构当中的数据科学部门,以便于让机器和机器之间有更加畅通的交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20