
年轻企业家让大数据越来越有创造力
随着年轻一代的企业家踏入大数据这个行业,他们不只局限于利用当前的优势,还让大数据发展,他们正在推进和改变大数据编写和使用的方法。现在大数据只增不减,商家意识到他们要么加入这个狂热中,要么只能加入反对那些使用更快速准确信息的公司的艰难战斗中。然而,随着年轻一代的企业家踏入这个行业,他们不只局限于利用当前的优势,还让大数据发展,他们正在推进和改变大数据编写和使用的方法。
这个领域有了新头脑的指导,大数据发展到了一个全新的创新水平。看看在我们周围即可发现,我们手机上的小通知,在营销活动中登录自己的社交账户,甚至是我们戴的配饰,到处都是大数据。商家是如何使用大数据的呢?
1. 将结构化与非结构化数据融合
大数据伊始,企业一直试图发现更多——尽管现在这样的发现多的不行。这个想法是不仅要获取数据,而且还要数据更新和当前重要的客户信息,并通过分析和完成结果,企业可以获得发展。然而,现代的企业家不只将大数据推动至此,而且将从其他企业中收集的结构化数据与非结构化数据融合,他们不仅能够获得更多的信息,还可以比较两个信息最后更快得出真正重要的信息。这要求更多的外包数据和促使企业创建这样的数据。更重要的是,它鼓励很多人通过寻求更高超的数据分析专家、更高端的软件和工具(如闪存)来加速这个发展过程。
2. 使用社交媒体
打开谷歌搜索,访问网站,或者网上购物时使用的这些数据都是是企业在众多用户中收集的。然而,尽管企业已经接受并使用这种资源,但年轻一代的企业家却开始寻找这些数据的重要之处,也就是人们以最非结构化的方式体现出的最有价值的信息所在之处。一直以来,企业不仅仅利用社交媒体来收集数据,他们改变账户,方法和营销努力以此获取他们所需要的反馈,并鼓励客户参与在线活动,提供最有价值的数据。年轻的一代不仅利用现有的数据,而且还为本身提供最好的服务量体裁衣。
3. 为大数据使用并改善APPs
尽管位列第二,使用平板电脑和手机应用程序作为获取用户信息的手段是一种商业策略,而且越来越多的人在利用。这导致了大多数未知的企业创建自己的应用程序,现代的一代是正将此推进一步。不仅仅是提供应用程序和接受已发掘的数据,年轻的企业家们更是为客户提供激励和好处以此给获取更多的数据。客户经常使用一款APP,提供个人信息,而且依赖它,更新他们的活动,企业现在能了解他们如何更好地为他们的客户服务和改变他们的努力。
4. 可穿戴的大数据
看看可穿戴技术,会认为这是便捷的下一步发展。但对于现代的企业主来讲,这是大数据成就的一个典型的例子。从一个智能手表收集的数据可以允许企业不仅知道你的习惯和你频繁去的地方,还有哪些特性更吸引你以及不怎么使用,这些都是他们可以用来分析的数据,来提高你的总体体验,还可以大胆预测哪些趋势和品味可以引领你,这样他们就可以在一个不相关的领域提供最好的服务。企业提供自己的品牌的可穿戴产品或更简单的设计不仅在可穿戴式产品的炒作,还可以充分和创造性的利用大数据的提供信息。
不管是大方向还是小方面,年轻的企业家都正在调整大数据运行的方式,以及大数据收集和使用的方法。随着如云端服务这样的技术的出现来帮助其前进与发展,可以公正地说,大数据的使用是越来越有创造力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14