
大数据正在引领一场营销变革
短短十数年,大数据、物联网、云存储、移动互联从趋势成为主流,商业生态早已迈过无数个可能,进入了今天飞速发展的快车道。大数据产业已渐趋成熟,亟待被各行各业所运用。随着大数据概念越来越清晰,运用产品类型的形式在数据当中应用将会越来越多。
大数据规模日趋庞大
所谓的大数据技术,就是从各种类型的数据中,采用新处理模式快速获得有价值的信息,从而实现深度理解、敏锐发现与精准决策。随着互联网+影响力的不断深入,人们的生产和生活方式发生了极大的改变。新一代信息技术与经济社会各领域的深度融合,引发了数据量的爆发式增长,使得数据资源成为国家重要的战略资源和核心创新要素。
据统计,全球所掌握的数据,每18个月就会翻倍。到2020年,全球的数据量将达到40ZB,其中我国所掌握的数据将占20%。
利用大数据分析,能够总结经验、发现规律、预测趋势、辅助决策,充分释放和利用海量数据资源中蕴含的巨大价值。大数据冲击传统市场,渗入更多的企业成为趋势。
据了解,2015年全球大数据产业规模达到了1403亿美元。预计到2020年,这一数据将达到10270亿美元。其中,2020年中国大数据产业规模或达13626亿元。
百分点产品市场总监、中关村(000931,股吧)大数据交易产业联盟副秘书长张涵诚向《中国产经新闻》等媒体表示,从卖产品转变为卖服务,服从管理转为创造客户价值,互联网核心思维是数据思维,是大数据冲击传统市场的三方面表现。
同时,随着数据资源的开放及使用逐步深入,应用创新成了大数据发展的主要驱动力。目前就传统的企业而言,已经将数据分析、数据资源作为一种新的业务,且投入程度可能强于传统的业务。
据相关数据分析显示,到2020年,中国大数据产业细分市场规模中,应用层规模占比将达到40%,衍生层规模占比达18.5%。
另外,按照行业来划分,未来大数据应用预计将以政府和金融为主,预计2020年政府和金融大数据应用或将占60%,随后是工业以及电力应用。
大数据是一种技术,一种思维的创新,也是数据本身价值的发掘。大数据时代,很多企业已经以数据化运营来驱动企业重大战略决策和业务发展,获得了卓越的成绩,成为行业里数据化运营的领先者。
刘洋在会上解说了数据驱动的两种模式,即分析决策和应用产品。其中分析决策包括战略分析、竞争分析以及商业分析。他表示,市面上大部分企业在做商业分析之前往往忽略了先做战略分析和竞争分析。
而所谓产品应用,刘洋表示,是与产品相关的数据,把这类数据包装成行业的内容或者是服务,提供给用户。
不仅如此,利用产品跟用户建立关系,利用数据发现规律从而驱动产品创新,也是一个非常好大数据的应用。张涵诚认为,这将能够实时了解用户需求,并及时对服务做出迎合客户群的调整,以赢得更大的市场占比。
电商平台没有评论,意味着转化率的降低、客单的下降。个性化的推荐,需要一个推荐引擎了解消费者的偏好、行为习惯,帮助他推荐一款产品。利用大数据可以洞察消费者的建议,对产品的看法,通过迅速做反馈,可以创造更大的营销。
大数据基因植入传统企业,还会使一些企业成为平台型的企业。张涵诚表示,有了数据以后,企业可以无限地延伸,采购大量的数据可以跟供应商更多做集成。例如,生产数据服务将会有更多的订单,销售渠道数据将同行商品放在平台上卖。
完善大数据体系建设
对制造业企业而言,大数据技术的战略意义不仅在于掌握庞大的数据信息,更在于对数据的“加工能力”——对大量的数据进行专业化的处理,使之转化成为对企业有用的信息。
虽然,很多企业已经意识到以数据驱动企业决策的价值,但是在“淘金”大数据过程中,仍然对思维架构、方式方法有些模糊不清。尤其是当企业IT部门面对瞬息万变的业务要求,面对TB/PB级的海量大数据的实时分析,面对多维度复杂的数据分析时,常常束手无策。
数据处理的成本非常高,业务发展多元化的时候发现经常遇到一个问题就是数据不准。就目前行业发展情况来看,基本上大规模的公司相对多一些,小的开发者可能越来越艰难。在中大型的开发者越来越多的情况下,发现用户的需求已经脱离了原来老的模式,这就需要把自己的数据拿过来做分析,放到系统里面与CRM、销售系统、投放系统、运营系统做打通,做一个全盘分析。
“大数据分析分四个步骤,即数据应用、数据分析、数据存储和计算以及数据源。其中数据源主要是保证数据不脏。”刘洋说道。
大数据在业务中的分析流程大概分两种类型。一种是当我们有数据和数据分析系统时的监控,通过业务上线、数据的监控、异常数据的发现、异常状况处理的策略、业务改进,形成一个闭环模式。另一种是产品要上新的功能,通过业务上线、效果评估、改进策略、业务改进、效果评估来形成闭环模式。
而就大数据团队架构,分为分散式和中心式。相较于分散式大数据团队的高成本、灵活、难管理特点,中心式的大数据团队的特点则是低成本、易管理、低效率。
分散式的大数据团队,因为每个业务都比较庞大,业务与业务之间的耦合度较低,需要灵活、快速的数据支撑,大型的数据平台无法满足快速变化的业务要求,于是业务会自建平台和分析人员。
仅中心式的大数据团队而言,各个业务有一些区分度,但是区别不大,于是公司会采用统一的数据树立部门,对所有的业务进行数据分析的支撑。
目前,形形色色的大数据已然成为了各领域发展的新宠。伴随技术的发展,大数据正在引领一场营销变革。大数据的存在让营销者能更好地、更实时地对消费者画像并实现无限的消费者细分。大数据强大的分析、挖掘、整合能力让营销变得简单起来.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29