京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据正在引领一场营销变革
短短十数年,大数据、物联网、云存储、移动互联从趋势成为主流,商业生态早已迈过无数个可能,进入了今天飞速发展的快车道。大数据产业已渐趋成熟,亟待被各行各业所运用。随着大数据概念越来越清晰,运用产品类型的形式在数据当中应用将会越来越多。

大数据规模日趋庞大
所谓的大数据技术,就是从各种类型的数据中,采用新处理模式快速获得有价值的信息,从而实现深度理解、敏锐发现与精准决策。随着互联网+影响力的不断深入,人们的生产和生活方式发生了极大的改变。新一代信息技术与经济社会各领域的深度融合,引发了数据量的爆发式增长,使得数据资源成为国家重要的战略资源和核心创新要素。
据统计,全球所掌握的数据,每18个月就会翻倍。到2020年,全球的数据量将达到40ZB,其中我国所掌握的数据将占20%。
利用大数据分析,能够总结经验、发现规律、预测趋势、辅助决策,充分释放和利用海量数据资源中蕴含的巨大价值。大数据冲击传统市场,渗入更多的企业成为趋势。
据了解,2015年全球大数据产业规模达到了1403亿美元。预计到2020年,这一数据将达到10270亿美元。其中,2020年中国大数据产业规模或达13626亿元。
百分点产品市场总监、中关村(000931,股吧)大数据交易产业联盟副秘书长张涵诚向《中国产经新闻》等媒体表示,从卖产品转变为卖服务,服从管理转为创造客户价值,互联网核心思维是数据思维,是大数据冲击传统市场的三方面表现。
同时,随着数据资源的开放及使用逐步深入,应用创新成了大数据发展的主要驱动力。目前就传统的企业而言,已经将数据分析、数据资源作为一种新的业务,且投入程度可能强于传统的业务。
据相关数据分析显示,到2020年,中国大数据产业细分市场规模中,应用层规模占比将达到40%,衍生层规模占比达18.5%。
另外,按照行业来划分,未来大数据应用预计将以政府和金融为主,预计2020年政府和金融大数据应用或将占60%,随后是工业以及电力应用。
大数据是一种技术,一种思维的创新,也是数据本身价值的发掘。大数据时代,很多企业已经以数据化运营来驱动企业重大战略决策和业务发展,获得了卓越的成绩,成为行业里数据化运营的领先者。
刘洋在会上解说了数据驱动的两种模式,即分析决策和应用产品。其中分析决策包括战略分析、竞争分析以及商业分析。他表示,市面上大部分企业在做商业分析之前往往忽略了先做战略分析和竞争分析。
而所谓产品应用,刘洋表示,是与产品相关的数据,把这类数据包装成行业的内容或者是服务,提供给用户。
不仅如此,利用产品跟用户建立关系,利用数据发现规律从而驱动产品创新,也是一个非常好大数据的应用。张涵诚认为,这将能够实时了解用户需求,并及时对服务做出迎合客户群的调整,以赢得更大的市场占比。
电商平台没有评论,意味着转化率的降低、客单的下降。个性化的推荐,需要一个推荐引擎了解消费者的偏好、行为习惯,帮助他推荐一款产品。利用大数据可以洞察消费者的建议,对产品的看法,通过迅速做反馈,可以创造更大的营销。
大数据基因植入传统企业,还会使一些企业成为平台型的企业。张涵诚表示,有了数据以后,企业可以无限地延伸,采购大量的数据可以跟供应商更多做集成。例如,生产数据服务将会有更多的订单,销售渠道数据将同行商品放在平台上卖。
完善大数据体系建设
对制造业企业而言,大数据技术的战略意义不仅在于掌握庞大的数据信息,更在于对数据的“加工能力”——对大量的数据进行专业化的处理,使之转化成为对企业有用的信息。
虽然,很多企业已经意识到以数据驱动企业决策的价值,但是在“淘金”大数据过程中,仍然对思维架构、方式方法有些模糊不清。尤其是当企业IT部门面对瞬息万变的业务要求,面对TB/PB级的海量大数据的实时分析,面对多维度复杂的数据分析时,常常束手无策。
数据处理的成本非常高,业务发展多元化的时候发现经常遇到一个问题就是数据不准。就目前行业发展情况来看,基本上大规模的公司相对多一些,小的开发者可能越来越艰难。在中大型的开发者越来越多的情况下,发现用户的需求已经脱离了原来老的模式,这就需要把自己的数据拿过来做分析,放到系统里面与CRM、销售系统、投放系统、运营系统做打通,做一个全盘分析。
“大数据分析分四个步骤,即数据应用、数据分析、数据存储和计算以及数据源。其中数据源主要是保证数据不脏。”刘洋说道。
大数据在业务中的分析流程大概分两种类型。一种是当我们有数据和数据分析系统时的监控,通过业务上线、数据的监控、异常数据的发现、异常状况处理的策略、业务改进,形成一个闭环模式。另一种是产品要上新的功能,通过业务上线、效果评估、改进策略、业务改进、效果评估来形成闭环模式。
而就大数据团队架构,分为分散式和中心式。相较于分散式大数据团队的高成本、灵活、难管理特点,中心式的大数据团队的特点则是低成本、易管理、低效率。
分散式的大数据团队,因为每个业务都比较庞大,业务与业务之间的耦合度较低,需要灵活、快速的数据支撑,大型的数据平台无法满足快速变化的业务要求,于是业务会自建平台和分析人员。
仅中心式的大数据团队而言,各个业务有一些区分度,但是区别不大,于是公司会采用统一的数据树立部门,对所有的业务进行数据分析的支撑。
目前,形形色色的大数据已然成为了各领域发展的新宠。伴随技术的发展,大数据正在引领一场营销变革。大数据的存在让营销者能更好地、更实时地对消费者画像并实现无限的消费者细分。大数据强大的分析、挖掘、整合能力让营销变得简单起来.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06